|
| 1 | +/* |
| 2 | + * Copyright (c) 2014-2015 ARM Limited. All rights reserved. |
| 3 | + * SPDX-License-Identifier: Apache-2.0 |
| 4 | + * Licensed under the Apache License, Version 2.0 (the License); you may |
| 5 | + * not use this file except in compliance with the License. |
| 6 | + * You may obtain a copy of the License at |
| 7 | + * |
| 8 | + * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | + * |
| 10 | + * Unless required by applicable law or agreed to in writing, software |
| 11 | + * distributed under the License is distributed on an AS IS BASIS, WITHOUT |
| 12 | + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | + * See the License for the specific language governing permissions and |
| 14 | + * limitations under the License. |
| 15 | + */ |
| 16 | +#include <stdint.h> |
| 17 | +#include <stdlib.h> |
| 18 | +#include <sys/types.h> |
| 19 | +#include <sys/stat.h> |
| 20 | +#include <fcntl.h> |
| 21 | +#include <unistd.h> |
| 22 | +#include "randLIB.h" |
| 23 | + |
| 24 | +/** |
| 25 | + * \brief Init seed for Pseudo Random. |
| 26 | + * On a Linux, this does nothing. |
| 27 | + * |
| 28 | + * \return None |
| 29 | + * |
| 30 | + */ |
| 31 | +void randLIB_seed_random(void) |
| 32 | +{ |
| 33 | +} |
| 34 | + |
| 35 | +/** |
| 36 | + * \brief Generate 8-bit random number. |
| 37 | + * |
| 38 | + * \param None |
| 39 | + * \return 8-bit random number |
| 40 | + * |
| 41 | + */ |
| 42 | +uint8_t randLIB_get_8bit(void) |
| 43 | +{ |
| 44 | + uint8_t ret_val; |
| 45 | + randLIB_get_n_bytes_random(&ret_val, 1); |
| 46 | + return ret_val; |
| 47 | +} |
| 48 | + |
| 49 | +/** |
| 50 | + * \brief Generate 16-bit random number. |
| 51 | + * |
| 52 | + * \param None |
| 53 | + * \return 16-bit random number |
| 54 | + * |
| 55 | + */ |
| 56 | +uint16_t randLIB_get_16bit(void) |
| 57 | +{ |
| 58 | + uint16_t ret_val; |
| 59 | + |
| 60 | + randLIB_get_n_bytes_random((uint8_t*)&ret_val, 2); |
| 61 | + return ret_val; |
| 62 | +} |
| 63 | +/** |
| 64 | + * \brief Generate 32-bit random number. |
| 65 | + * |
| 66 | + * \param None |
| 67 | + * \return 32-bit random number |
| 68 | + * |
| 69 | + */ |
| 70 | +uint32_t randLIB_get_32bit(void) |
| 71 | +{ |
| 72 | + uint32_t ret_val; |
| 73 | + randLIB_get_n_bytes_random((uint8_t*)&ret_val, 4); |
| 74 | + return ret_val; |
| 75 | +} |
| 76 | + |
| 77 | + |
| 78 | +/** |
| 79 | + * \brief Generate n-bytes random numbers. |
| 80 | + * |
| 81 | + * \param data_ptr pointer where random will be stored |
| 82 | + * \param eight_bit_boundary how many bytes need random |
| 83 | + * \return 0 process valid |
| 84 | + * \return -1 Unsupported Parameters or failed to get random data. |
| 85 | + * |
| 86 | + */ |
| 87 | +int8_t randLIB_get_n_bytes_random(uint8_t *data_ptr, uint8_t eight_bit_boundary) |
| 88 | +{ |
| 89 | + if ((data_ptr == 0) || (eight_bit_boundary == 0)) { |
| 90 | + return -1; |
| 91 | + } |
| 92 | + |
| 93 | + int fd = open("/dev/urandom", O_RDONLY); |
| 94 | + if (fd != -1) { |
| 95 | + size_t len = read(fd, data_ptr, eight_bit_boundary); |
| 96 | + close(fd); |
| 97 | + if (len == eight_bit_boundary) |
| 98 | + return 0; |
| 99 | + } |
| 100 | + |
| 101 | + return -1; |
| 102 | +} |
| 103 | + |
| 104 | +/** |
| 105 | + * \brief Generate a random number within a range. |
| 106 | + * |
| 107 | + * The result is linearly distributed in the range [min..max], inclusive. |
| 108 | + * |
| 109 | + * \param min minimum value that can be generated |
| 110 | + * \param max maximum value that can be generated |
| 111 | + */ |
| 112 | +uint16_t randLIB_get_random_in_range(uint16_t min, uint16_t max) |
| 113 | +{ |
| 114 | + /* This special case is potentially common, particularly in this routine's |
| 115 | + * first user (Trickle), so worth catching immediately */ |
| 116 | + if (min == max) { |
| 117 | + return min; |
| 118 | + } |
| 119 | + |
| 120 | + /* 16-bit arithmetic below fails in this extreme case; we can optimise it */ |
| 121 | + if (max - min == 0xFFFF) { |
| 122 | + return randLIB_get_16bit(); |
| 123 | + } |
| 124 | + |
| 125 | + unsigned int values_needed = max + 1 - min; |
| 126 | + unsigned int band_size = 0x10000u / values_needed; |
| 127 | + unsigned int top_of_bands = band_size * values_needed; |
| 128 | + unsigned int result; |
| 129 | + do { |
| 130 | + result = randLIB_get_16bit(); |
| 131 | + } while (result >= top_of_bands); |
| 132 | + |
| 133 | + return min + (uint16_t)(result / band_size); |
| 134 | +} |
| 135 | + |
| 136 | +/** |
| 137 | + * \brief Randomise a base 32-bit number by a jitter factor |
| 138 | + * |
| 139 | + * The result is linearly distributed in the jitter range, which is expressed |
| 140 | + * as fixed-point unsigned 1.15 values. For example, to produce a number in the |
| 141 | + * range [0.75 * base, 1.25 * base], set min_factor to 0x6000 and max_factor to |
| 142 | + * 0xA000. |
| 143 | + * |
| 144 | + * Result is clamped to 0xFFFFFFFF if it overflows. |
| 145 | + * |
| 146 | + * \param base The base 32-bit value |
| 147 | + * \param min_factor The minimum value for the random factor |
| 148 | + * \param max_factor The maximum value for the random factor |
| 149 | + */ |
| 150 | +uint32_t randLIB_randomise_base(uint32_t base, uint16_t min_factor, uint16_t max_factor) |
| 151 | +{ |
| 152 | + uint16_t random_factor = randLIB_get_random_in_range(min_factor, max_factor); |
| 153 | + |
| 154 | + /* 32x16-bit long multiplication, to get 48-bit result */ |
| 155 | + uint32_t hi = (base >> 16) * random_factor; |
| 156 | + uint32_t lo = (base & 0xFFFF) * random_factor; |
| 157 | + /* Add halves, and take top 32 bits of 48-bit result */ |
| 158 | + uint32_t res = hi + (lo >> 16); |
| 159 | + |
| 160 | + /* Randomisation factor is *2^15, so need to shift up 1 more bit, avoiding overflow */ |
| 161 | + if (res & 0x80000000) { |
| 162 | + res = 0xFFFFFFFF; |
| 163 | + } else { |
| 164 | + res = (res << 1) | ((lo >> 15) & 1); |
| 165 | + } |
| 166 | + |
| 167 | + return res; |
| 168 | +} |
0 commit comments