|
20 | 20 | ]
|
21 | 21 | },
|
22 | 22 | {
|
| 23 | + "attachments": {}, |
23 | 24 | "cell_type": "markdown",
|
24 | 25 | "metadata": {},
|
25 | 26 | "source": [
|
26 | 27 | "# Demand Elasticity Example: Data Preprocessing"
|
27 | 28 | ]
|
28 | 29 | },
|
29 | 30 | {
|
| 31 | + "attachments": {}, |
30 | 32 | "cell_type": "markdown",
|
31 | 33 | "metadata": {},
|
32 | 34 | "source": [
|
|
36 | 38 | ]
|
37 | 39 | },
|
38 | 40 | {
|
| 41 | + "attachments": {}, |
39 | 42 | "cell_type": "markdown",
|
40 | 43 | "metadata": {},
|
41 | 44 | "source": [
|
|
46 | 49 | ]
|
47 | 50 | },
|
48 | 51 | {
|
| 52 | + "attachments": {}, |
49 | 53 | "cell_type": "markdown",
|
50 | 54 | "metadata": {},
|
51 | 55 | "source": [
|
|
64 | 68 | "name": "stdout",
|
65 | 69 | "output_type": "stream",
|
66 | 70 | "text": [
|
67 |
| - "Collecting pyarrow\n", |
68 |
| - " Downloading pyarrow-11.0.0-cp311-cp311-win_amd64.whl (20.5 MB)\n", |
69 |
| - " ---------------------------------------- 0.0/20.5 MB ? eta -:--:--\n", |
70 |
| - " - -------------------------------------- 0.9/20.5 MB 18.5 MB/s eta 0:00:02\n", |
71 |
| - " ---- ----------------------------------- 2.1/20.5 MB 21.8 MB/s eta 0:00:01\n", |
72 |
| - " ----- ---------------------------------- 2.8/20.5 MB 19.8 MB/s eta 0:00:01\n", |
73 |
| - " ------ --------------------------------- 3.4/20.5 MB 18.2 MB/s eta 0:00:01\n", |
74 |
| - " ------- -------------------------------- 4.0/20.5 MB 17.1 MB/s eta 0:00:01\n", |
75 |
| - " -------- ------------------------------- 4.6/20.5 MB 16.3 MB/s eta 0:00:01\n", |
76 |
| - " ---------- ----------------------------- 5.2/20.5 MB 15.8 MB/s eta 0:00:01\n", |
77 |
| - " ----------- ---------------------------- 5.7/20.5 MB 15.2 MB/s eta 0:00:01\n", |
78 |
| - " ------------ --------------------------- 6.3/20.5 MB 14.9 MB/s eta 0:00:01\n", |
79 |
| - " ------------- -------------------------- 6.8/20.5 MB 14.6 MB/s eta 0:00:01\n", |
80 |
| - " -------------- ------------------------- 7.4/20.5 MB 14.4 MB/s eta 0:00:01\n", |
81 |
| - " --------------- ------------------------ 8.0/20.5 MB 14.3 MB/s eta 0:00:01\n", |
82 |
| - " ---------------- ----------------------- 8.7/20.5 MB 14.2 MB/s eta 0:00:01\n", |
83 |
| - " ------------------ --------------------- 9.3/20.5 MB 14.2 MB/s eta 0:00:01\n", |
84 |
| - " ------------------ -------------------- 10.0/20.5 MB 14.2 MB/s eta 0:00:01\n", |
85 |
| - " -------------------- ------------------ 10.7/20.5 MB 14.6 MB/s eta 0:00:01\n", |
86 |
| - " --------------------- ----------------- 11.5/20.5 MB 13.9 MB/s eta 0:00:01\n", |
87 |
| - " ----------------------- --------------- 12.2/20.5 MB 13.6 MB/s eta 0:00:01\n", |
88 |
| - " ------------------------ -------------- 12.7/20.5 MB 13.4 MB/s eta 0:00:01\n", |
89 |
| - " ------------------------- ------------- 13.3/20.5 MB 13.1 MB/s eta 0:00:01\n", |
90 |
| - " -------------------------- ------------ 13.9/20.5 MB 13.4 MB/s eta 0:00:01\n", |
91 |
| - " --------------------------- ----------- 14.5/20.5 MB 13.4 MB/s eta 0:00:01\n", |
92 |
| - " ---------------------------- ---------- 15.1/20.5 MB 13.1 MB/s eta 0:00:01\n", |
93 |
| - " ----------------------------- --------- 15.8/20.5 MB 13.4 MB/s eta 0:00:01\n", |
94 |
| - " ------------------------------- ------- 16.4/20.5 MB 13.6 MB/s eta 0:00:01\n", |
95 |
| - " -------------------------------- ------ 17.1/20.5 MB 13.9 MB/s eta 0:00:01\n", |
96 |
| - " --------------------------------- ----- 17.7/20.5 MB 13.9 MB/s eta 0:00:01\n", |
97 |
| - " ---------------------------------- ---- 18.2/20.5 MB 13.6 MB/s eta 0:00:01\n", |
98 |
| - " ----------------------------------- --- 18.8/20.5 MB 13.6 MB/s eta 0:00:01\n", |
99 |
| - " ------------------------------------ -- 19.3/20.5 MB 13.4 MB/s eta 0:00:01\n", |
100 |
| - " ------------------------------------- - 19.9/20.5 MB 13.4 MB/s eta 0:00:01\n", |
101 |
| - " -------------------------------------- 20.5/20.5 MB 13.4 MB/s eta 0:00:01\n", |
102 |
| - " --------------------------------------- 20.5/20.5 MB 12.6 MB/s eta 0:00:00\n", |
103 |
| - "Requirement already satisfied: numpy>=1.16.6 in c:\\users\\svenk\\.conda\\envs\\dml_dev\\lib\\site-packages (from pyarrow) (1.24.2)\n", |
104 |
| - "Installing collected packages: pyarrow\n", |
105 |
| - "Successfully installed pyarrow-11.0.0\n" |
| 71 | + "Requirement already satisfied: pyarrow in c:\\users\\svenk\\.conda\\envs\\dml_dev\\lib\\site-packages (11.0.0)\n", |
| 72 | + "Requirement already satisfied: numpy>=1.16.6 in c:\\users\\svenk\\.conda\\envs\\dml_dev\\lib\\site-packages (from pyarrow) (1.24.2)\n" |
106 | 73 | ]
|
107 | 74 | }
|
108 | 75 | ],
|
|
289 | 256 | ]
|
290 | 257 | },
|
291 | 258 | {
|
| 259 | + "attachments": {}, |
292 | 260 | "cell_type": "markdown",
|
293 | 261 | "metadata": {},
|
294 | 262 | "source": [
|
295 | 263 | "### Variance of prices per product\n"
|
296 | 264 | ]
|
297 | 265 | },
|
298 | 266 | {
|
| 267 | + "attachments": {}, |
299 | 268 | "cell_type": "markdown",
|
300 | 269 | "metadata": {},
|
301 | 270 | "source": [
|
|
342 | 311 | ]
|
343 | 312 | },
|
344 | 313 | {
|
| 314 | + "attachments": {}, |
345 | 315 | "cell_type": "markdown",
|
346 | 316 | "metadata": {},
|
347 | 317 | "source": [
|
|
380 | 350 | ]
|
381 | 351 | },
|
382 | 352 | {
|
| 353 | + "attachments": {}, |
383 | 354 | "cell_type": "markdown",
|
384 | 355 | "metadata": {},
|
385 | 356 | "source": [
|
386 | 357 | "## Mimick Feature Engineering in [Roemheld (2021)](https://towardsdatascience.com/causal-inference-example-elasticity-de4a3e2e621b)"
|
387 | 358 | ]
|
388 | 359 | },
|
389 | 360 | {
|
| 361 | + "attachments": {}, |
390 | 362 | "cell_type": "markdown",
|
391 | 363 | "metadata": {},
|
392 | 364 | "source": [
|
|
407 | 379 | ]
|
408 | 380 | },
|
409 | 381 | {
|
| 382 | + "attachments": {}, |
410 | 383 | "cell_type": "markdown",
|
411 | 384 | "metadata": {},
|
412 | 385 | "source": [
|
|
437 | 410 | ]
|
438 | 411 | },
|
439 | 412 | {
|
| 413 | + "attachments": {}, |
440 | 414 | "cell_type": "markdown",
|
441 | 415 | "metadata": {},
|
442 | 416 | "source": [
|
|
535 | 509 | ]
|
536 | 510 | },
|
537 | 511 | {
|
| 512 | + "attachments": {}, |
538 | 513 | "cell_type": "markdown",
|
539 | 514 | "metadata": {},
|
540 | 515 | "source": [
|
|
793 | 768 | ]
|
794 | 769 | },
|
795 | 770 | {
|
| 771 | + "attachments": {}, |
796 | 772 | "cell_type": "markdown",
|
797 | 773 | "metadata": {},
|
798 | 774 | "source": [
|
|
840 | 816 | ]
|
841 | 817 | },
|
842 | 818 | {
|
| 819 | + "attachments": {}, |
843 | 820 | "cell_type": "markdown",
|
844 | 821 | "metadata": {},
|
845 | 822 | "source": [
|
846 | 823 | "## Comparison to OLS DML Results in [Roemheld (2021)](https://towardsdatascience.com/causal-inference-example-elasticity-de4a3e2e621b) (with full data set)"
|
847 | 824 | ]
|
848 | 825 | },
|
849 | 826 | {
|
| 827 | + "attachments": {}, |
850 | 828 | "cell_type": "markdown",
|
851 | 829 | "metadata": {},
|
852 | 830 | "source": [
|
|
0 commit comments