@@ -16,144 +16,143 @@ Double machine learning literature
16
16
**Double/debiased machine learning for treatment and structural parameters ** |br |
17
17
*The Econometrics Journal, 21(1), C1-C68, 2018 * |br |
18
18
:octicon: `link ` :bdg-link-dark: `URL <https://doi.org/10.1111/ectj.12097> `
19
- :opticon: `link ` :link-badge: `https://doi.org/10.1111/ectj.12097,"URL",cls=badge-dark `
20
- :link-badge: `https://arxiv.org/abs/1608.00060,"arXiv",cls=badge-dark `
19
+ :bdg-link-dark: `arXiv <https://arxiv.org/abs/1608.00060> `
21
20
22
21
.. dropdown :: Software for double machine learning
23
22
:class-title: sd-bg-primary sd-font-weight-bold
24
23
25
24
- Philipp Bach, Victor Chernozhukov, Malte S. Kurz, Martin Spindler |br |
26
25
**DoubleML -- An Object-Oriented Implementation of Double Machine Learning in Python ** |br |
27
26
*Journal of Machine Learning Research, 23(53): 1-6, 2022 * |br |
28
- :badge : `Python Package DoubleML,badge-info ` |br |
29
- :opticon : `link ` :link-badge: ` https://www.jmlr.org/papers/v23/21-0862.html,"URL",cls=badge-dark `
30
- :opticon: ` link ` :link-badge: ` https://arxiv.org/abs/2104.03220,"arXiv",cls=badge-dark `
31
- :opticon: ` mark-github ` : link-badge: ` https://github.com/DoubleML/doubleml-for-py,"GitHub",cls=badge-dark `
32
- :link-badge: ` https://pypi .org/project/DoubleML,"PyPI",cls=badge-dark `
33
- :link-badge: ` https://anaconda.org/conda-forge /doubleml,"conda-forge",cls=badge-dark `
27
+ :bdg-info : `Python Package DoubleML ` |br |
28
+ :octicon : `link ` :bdg- link-dark: ` URL < https://www.jmlr.org/papers/v23/21-0862.html> `
29
+ :bdg- link-dark: ` arXiv < https://arxiv.org/abs/2104.03220> `
30
+ :bdg- link-dark: ` PyPI < https://pypi.org/project/DoubleML> `
31
+ :bdg- link-dark: ` conda-forge < https://anaconda .org/conda-forge/doubleml> `
32
+ :octicon: ` mark-github ` :bdg- link-dark: ` GitHub < https://github.com/DoubleML /doubleml-for-py> `
34
33
|hr |
35
34
36
35
- Philipp Bach, Victor Chernozhukov, Malte S. Kurz, Martin Spindler |br |
37
36
**DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R ** |br |
38
37
*arXiv preprint arXiv:2103.09603 [stat.ML], 2021 * |br |
39
- :badge : `R Package DoubleML,badge-info ` |br |
40
- :opticon : `link ` :link-badge: ` https://arxiv.org/abs/2103.09603,"arXiv",cls=badge-dark `
41
- :opticon: ` mark-github ` : link-badge: ` https://github.com/DoubleML/doubleml-for-r,"GitHub",cls=badge-dark `
42
- :link-badge: ` https://cran.r-project.org/package= DoubleML,"CRAN",cls=badge-dark `
38
+ :bdg-info : `R Package DoubleML ` |br |
39
+ :octicon : `link ` :bdg- link-dark: ` arXiv < https://arxiv.org/abs/2103.09603> `
40
+ :bdg- link-dark: ` CRAN < https://cran.r-project.org/package=DoubleML> `
41
+ :octicon: ` mark-github ` :bdg- link-dark: ` GitHub < https://github.com/ DoubleML/doubleml-for-r> `
43
42
|hr |
44
43
45
44
- Keith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Paul Oka, Miruna Oprescu, Vasilis Syrgkanis |br |
46
45
**EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation ** |br |
47
46
*2019 * |br |
48
- :badge : `Python Package EconML,badge-info ` |br |
49
- :opticon : `mark-github ` :link-badge: ` https://github.com/microsoft/EconML,"GitHub",cls=badge-dark `
47
+ :bdg-info : `Python Package EconML ` |br |
48
+ :octicon : `mark-github ` :bdg- link-dark: ` GitHub < https://github.com/microsoft/EconML> `
50
49
|hr |
51
50
52
51
- Hugo Bodory, Martin Huber |br |
53
52
**The causalweight package for causal inference in R ** |br |
54
53
*Working Papers SES 493, Faculty of Economics and Social Science, University of Fribourg, 2018 * |br |
55
- :badge : `R Package causalweight,badge-info ` |br |
56
- :opticon : `link ` :link-badge: ` https://folia.unifr.ch/global/documents/306524,"URL",cls=badge-dark `
57
- :link-badge: ` https://cran.r-project.org/package=causalweight,"CRAN",cls=badge-dark `
54
+ :bdg-info : `R Package causalweight ` |br |
55
+ :octicon : `link ` :bdg- link-dark: ` URL < https://folia.unifr.ch/global/documents/306524> `
56
+ :bdg- link-dark: ` CRAN < https://cran.r-project.org/package=causalweight> `
58
57
|hr |
59
58
60
59
- Michael C. Knaus |br |
61
60
**Double Machine Learning based Program Evaluation under Unconfoundedness ** |br |
62
61
*arXiv preprint arXiv:2003.03191 [econ.EM], 2020 * |br |
63
- :badge : `R Package causalDML,badge-info ` |br |
64
- :opticon : `link ` :link-badge: ` https://arxiv.org/abs/2003.03191,"arXiv",cls=badge-dark `
65
- :opticon : `mark-github ` :link-badge: ` https://github.com/MCKnaus/causalDML,"GitHub",cls=badge-dark `
62
+ :bdg-info : `R Package causalDML ` |br |
63
+ :octicon : `link ` :bdg- link-dark: ` arXiv < https://arxiv.org/abs/2003.03191> `
64
+ :octicon : `mark-github ` :bdg- link-dark: ` GitHub < https://github.com/MCKnaus/causalDML> `
66
65
|hr |
67
66
68
67
- Michael C. Knaus |br |
69
68
**A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student’s Skills ** |br |
70
69
*Journal of the Royal Statistical Society A, 184(1), 282-300, 2021 * |br |
71
- :badge : `R Package dmlmt,badge-info ` |br |
72
- :opticon : `link ` :link-badge: ` https://doi.org/10.1111/rssa.12623,"URL",cls=badge-dark `
73
- :link-badge: ` https://arxiv.org/abs/1805.10300,"arXiv",cls=badge-dark `
74
- :opticon : `mark-github ` :link-badge: ` https://github.com/MCKnaus/dmlmt,"GitHub",cls=badge-dark `
70
+ :bdg-info : `R Package dmlmt ` |br |
71
+ :octicon : `link ` :bdg- link-dark: ` URL < https://doi.org/10.1111/rssa.12623> `
72
+ :bdg- link-dark: ` arXiv < https://arxiv.org/abs/1805.10300> `
73
+ :octicon : `mark-github ` :bdg- link-dark: ` GitHub < https://github.com/MCKnaus/dmlmt> `
75
74
|hr |
76
75
77
76
- Malte S. Kurz |br |
78
77
**Distributed Double Machine Learning with a Serverless Architecture ** |br |
79
78
*In Companion of the ACM/SPEC International Conference on Performance Engineering (ICPE ‘21). Association for
80
79
Computing Machinery, New York, NY, USA, 27-33, 2021 * |br |
81
- :badge : `Python Package DoubleML-Serverless,badge-info ` |br |
82
- :opticon : `link ` :link-badge: ` https://dl.acm.org/doi/10.1145/3447545.3451181,"URL",cls=badge-dark `
83
- :link-badge: ` https://arxiv.org/abs/2101.04025,"arXiv",cls=badge-dark `
84
- :opticon : `mark-github ` :link-badge: ` https://github.com/DoubleML/doubleml-serverless,"GitHub",cls=badge-dark `
80
+ :bdg-info : `Python Package DoubleML-Serverless ` |br |
81
+ :octicon : `link ` :bdg- link-dark: ` URL < https://dl.acm.org/doi/10.1145/3447545.3451181> `
82
+ :bdg- link-dark: ` arXiv < https://arxiv.org/abs/2101.04025> `
83
+ :octicon : `mark-github ` :bdg- link-dark: ` GitHub < https://github.com/DoubleML/doubleml-serverless> `
85
84
|hr |
86
85
87
86
- Juraj Szitas |br |
88
87
**postDoubleR: Post Double Selection with Double Machine Learning ** |br |
89
88
*2019 * |br |
90
- :badge : `R Package postDoubleR,badge-info ` |br |
91
- :opticon : `mark-github ` :link-badge: ` https://github.com/JSzitas/postDoubleR,"GitHub",cls=badge-dark `
89
+ :bdg-info : `R Package postDoubleR ` |br |
90
+ :octicon : `mark-github ` :bdg- link-dark: ` GitHub < https://github.com/JSzitas/postDoubleR> `
92
91
93
92
.. dropdown :: Double machine learning models and methodological extensions
94
93
:class-title: sd-bg-primary sd-font-weight-bold
95
94
96
95
- Neng-Chieh Chang |br |
97
96
**Double/debiased machine learning for difference-in-differences models ** |br |
98
97
*The Econometrics Journal, 23(2), Pages 177–191, 2020 * |br |
99
- :opticon : `link ` :link-badge: ` https://doi.org/10.1093/ectj/utaa001,"URL",cls=badge-dark `
98
+ :octicon : `link ` :bdg- link-dark: ` URL < https://doi.org/10.1093/ectj/utaa001> `
100
99
|hr |
101
100
102
101
- Harold D. Chiang, Kengo Kato, Yukun Ma, Yuya Sasaki |br |
103
102
**Multiway Cluster Robust Double/Debiased Machine Learning ** |br |
104
103
*Journal of Business & Economic Statistics, forthcoming, 2021 * |br |
105
- :opticon : `link ` :link-badge: ` https://doi.org/10.1080/07350015.2021.1895815,"URL",cls=badge-dark `
106
- :link-badge: ` https://arxiv.org/abs/1909.03489,"arXiv",cls=badge-dark `
104
+ :octicon : `link ` :bdg- link-dark: ` URL < https://doi.org/10.1080/07350015.2021.1895815> `
105
+ :bdg- link-dark: ` arXiv < https://arxiv.org/abs/1909.03489> `
107
106
|hr |
108
107
109
108
- Nathan Kallus, Xiaojie Mao, Masatoshi Uehara |br |
110
109
**Localized Debiased Machine Learning: Efficient Inference on Quantile Treatment Effects and Beyond ** |br |
111
110
*arXiv preprint arXiv:1912.12945 [stat.ML], 2019 * |br |
112
- :opticon : `link ` :link-badge: ` https://doi.org/10.48550/arXiv.1912.12945,"arXiv",cls=badge-dark `
111
+ :octicon : `link ` :bdg- link-dark: ` arXiv < https://doi.org/10.48550/arXiv.1912.12945> `
113
112
|hr |
114
113
115
114
- Nathan Kallus, Masatoshi Uehara |br |
116
115
**Double Reinforcement Learning for Efficient Off-Policy Evaluation in Markov Decision Processes ** |br |
117
116
*Journal of Machine Learning Research 21, 1-63, 2020 * |br |
118
- :opticon : `link ` :link-badge: ` https://jmlr.org/papers/volume21/19-827/19-827.pdf,"URL",cls=badge-dark `
117
+ :octicon : `link ` :bdg- link-dark: ` URL < https://jmlr.org/papers/volume21/19-827/19-827.pdf> `
119
118
|hr |
120
119
121
120
- Yusuke Narita, Shota Yasui, Kohei Yata |br |
122
121
**Debiased Off-Policy Evaluation for Recommendation Systems ** |br |
123
122
*RecSys '21: Fifteenth ACM Conference on Recommender Systems, 372–379, 2021 * |br |
124
- :opticon : `link ` :link-badge: ` https://doi.org/10.1145/3460231.3474231,"URL",cls=badge-dark `
125
- :link-badge: ` https://arxiv.org/abs/2002.08536,"arXiv",cls=badge-dark `
123
+ :octicon : `link ` :bdg- link-dark: ` URL < https://doi.org/10.1145/3460231.3474231> `
124
+ :bdg- link-dark: ` arXiv < https://arxiv.org/abs/2002.08536> `
126
125
|hr |
127
126
128
127
- Lester Mackey, Vasilis Syrgkanis, Ilias Zadik |br |
129
128
**Orthogonal Machine Learning: Power and Limitations ** |br |
130
129
*Proceedings of the 35th International Conference on Machine Learning, 2018 * |br |
131
- :opticon : `link ` :link-badge: ` http://proceedings.mlr.press/v80/mackey18a/mackey18a.pdf,"URL",cls=badge-dark `
132
- :link-badge: ` https://arxiv.org/abs/1711.00342,"arXiv",cls=badge-dark `
130
+ :octicon : `link ` :bdg- link-dark: ` URL < http://proceedings.mlr.press/v80/mackey18a> `
131
+ :bdg- link-dark: ` arXiv < https://arxiv.org/abs/1711.00342> `
133
132
|hr |
134
133
135
134
- Pedro HC Sant'Anna, Jun Zhao |br |
136
135
**Doubly robust difference-in-differences estimators ** |br |
137
136
*Journal of Econometrics, 219(1), Pages 101-122, 2020 * |br |
138
- :opticon : `link ` :link-badge: ` https://doi.org/10.1016/j.jeconom.2020.06.003,"URL",cls=badge-dark `
137
+ :octicon : `link ` :bdg- link-dark: ` URL < https://doi.org/10.1016/j.jeconom.2020.06.003> `
139
138
|hr |
140
139
141
140
- Vira Semenova, Victor Chernozhukov |br |
142
141
**Debiased machine learning of conditional average treatment effects and other causal functions ** |br |
143
142
*The Econometrics Journal, 24(2), Pages 264-289, 2021 * |br |
144
- :opticon : `link ` :link-badge: ` https://doi.org/10.1093/ectj/utaa027,"URL",cls=badge-dark `
143
+ :octicon : `link ` :bdg- link-dark: ` URL < https://doi.org/10.1093/ectj/utaa027> `
145
144
|hr |
146
145
147
146
- Vira Semenova, Matt Goldman, Victor Chernozhukov, Matt Taddy |br |
148
- **Estimation and Inference on Heterogeneous Treatment Effects in High-Dimensional Dynamic Panels ** |br |
147
+ **Estimation and Inference on Heterogeneous Treatment Effects in High-Dimensional Dynamic Panels under Weak Dependence ** |br |
149
148
*arXiv preprint arXiv:1712.09988 [stat.ML], 2017 * |br |
150
- :opticon : `link ` :link-badge: ` https://arxiv.org/abs/1712.09988,"arXiv",cls=badge-dark `
149
+ :octicon : `link ` :bdg- link-dark: ` arXiv < https://arxiv.org/abs/1712.09988> `
151
150
|hr |
152
151
153
152
- Michael Zimmert |br |
154
153
**Efficient Difference-in-Differences Estimation with High-Dimensional Common Trend Confounding ** |br |
155
154
*arXiv preprint arXiv:1809.01643 [econ.EM], 2018 * |br |
156
- :opticon : `link ` :link-badge: ` https://arxiv.org/abs/1809.01643,"arXiv",cls=badge-dark `
155
+ :octicon : `link ` :bdg- link-dark: ` arXiv < https://arxiv.org/abs/1809.01643> `
157
156
158
157
.. dropdown :: Debiased sparsity-based inference / theoretical foundations
159
158
:class-title: sd-bg-primary sd-font-weight-bold
@@ -162,27 +161,27 @@ Double machine learning literature
162
161
**Inference for High-Dimensional Sparse Econometric Models ** |br |
163
162
*In D. Acemoglu, M. Arellano, & E. Dekel (Eds.), Advances in Economics and Econometrics: Tenth World Congress,
164
163
245-295, 2013 * |br |
165
- :opticon : `link ` :link-badge: ` https://doi.org/10.1017/CBO9781139060035.008,"URL",cls=badge-dark `
166
- :link-badge: ` https://arxiv.org/abs/1201.0220,"arXiv",cls=badge-dark `
164
+ :octicon : `link ` :bdg- link-dark: ` URL < https://doi.org/10.1017/CBO9781139060035.008> `
165
+ :bdg- link-dark: ` arXiv < https://arxiv.org/abs/1201.0220> `
167
166
|hr |
168
167
169
168
- Alexandre Belloni, Victor Chernozhukov, Lie Wang |br |
170
169
**Pivotal estimation via square-root Lasso in nonparametric regression ** |br |
171
170
*The Annals of Statistics, 42(2), 757-788, 2014 * |br |
172
- :opticon : `link ` :link-badge: ` https://doi.org/10.1214/14-AOS1204,"URL",cls=badge-dark `
171
+ :octicon : `link ` :bdg- link-dark: ` URL < https://doi.org/10.1214/14-AOS1204> `
173
172
|hr |
174
173
175
174
- Victor Chernozhukov, Christian Hansen, Martin Spindler |br |
176
175
**Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach **
177
176
*Annual Review of Economics 7(1), 649-688, 2015 * |br |
178
- :opticon : `link ` :link-badge: ` https://doi.org/10.1146/annurev-economics-012315-015826,"URL",cls=badge-dark `
177
+ :octicon : `link ` :bdg- link-dark: ` URL < https://doi.org/10.1146/annurev-economics-012315-015826> `
179
178
|hr |
180
179
181
180
- Adel Javanmard, Andrea Montanari |br |
182
181
**Hypothesis Testing in High-Dimensional Regression Under the Gaussian Random Design Model: Asymptotic Theory ** |br |
183
182
*IEEE Transactions on Information Theory, 60(10):6522–6554, 2014 * |br |
184
- :opticon : `link ` :link-badge: ` https://doi.org/10.1109/TIT.2014.2343629,"URL",cls=badge-dark `
185
- :link-badge: ` https://arxiv.org/abs/1301.4240,"arXiv",cls=badge-dark `
183
+ :octicon : `link ` :bdg- link-dark: ` URL < https://doi.org/10.1109/TIT.2014.2343629> `
184
+ :bdg- link-dark: ` arXiv < https://arxiv.org/abs/1301.4240> `
186
185
|hr |
187
186
188
187
- Jerzy Neyman |br |
@@ -193,27 +192,31 @@ Double machine learning literature
193
192
- Sara van de Geer, Peter Bühlmann, Ya’acov Ritov, Ruben Dezeure |br |
194
193
**On asymptotically optimal confidence regions and tests for high-dimensional models ** |br |
195
194
*The Annals of Statistics, 42(3), 1166-1202, 2014 * |br |
196
- :opticon : `link ` :link-badge: ` https://doi.org/10.1214/14-AOS1221,"URL",cls=badge-dark `
195
+ :octicon : `link ` :bdg- link-dark: ` URL < https://doi.org/10.1214/14-AOS1221> `
197
196
|hr |
198
197
199
198
- C.-H. Zhang, S.S. Zhang |br |
200
199
**Confidence intervals for low dimensional parameters in high dimensional linear models ** |br |
201
200
*Journal of the Royal Statistical Society: Series B, 76, 217-242, 2014 * |br |
202
- :opticon : `link ` :link-badge: ` https://doi.org/10.1111/rssb.12026,"URL",cls=badge-dark `
201
+ :octicon : `link ` :bdg- link-dark: ` URL < https://doi.org/10.1111/rssb.12026> `
203
202
|hr |
204
203
205
204
.. grid :: 1
206
205
207
206
.. grid-item-card :: Want to add or update a reference in the literature overview?
208
207
:text-align: center
209
208
210
- .. link- button :: https://github.com/DoubleML/doubleml-docs/edit/main/doc/literature/literature.rst
211
- :text: Edit this file to propose a change or addition
212
- :classes: btn-block btn-dark btn-sm edit-button
209
+ .. button-link :: https://github.com/DoubleML/doubleml-docs/edit/main/doc/literature/literature.rst
210
+ :color: dark
211
+ :expand:
213
212
214
- .. link-button :: https://github.com/DoubleML/doubleml-docs/issues/new?assignees=FrederikBornemann&labels=literature&template=literature.yml&title=%5BADD%2FEDIT%5D+Reference+in+literature+overview
215
- :text: Discuss a change or addition via an issue
216
- :classes: btn-block btn-dark btn-sm issue-button
213
+ Edit this file to propose a change or addition :octicon: `mark-github `
214
+
215
+ .. button-link :: https://github.com/DoubleML/doubleml-docs/issues/new?assignees=FrederikBornemann&labels=literature&template=literature.yml&title=%5BADD%2FEDIT%5D+Reference+in+literature+overview
216
+ :color: dark
217
+ :expand:
218
+
219
+ Discuss a change or addition via an issue :octicon: `mark-github `
217
220
218
221
.. raw :: html
219
222
0 commit comments