@@ -282,6 +282,86 @@ with :math:`\eta=(g, m, r)` and where the components of the linear score are
282
282
283
283
\psi _b(W; \eta ) &= g(1 ,X) - g(0 ,X) + \frac {Z (Y - g(1 ,X))}{m(X)} - \frac {(1 - Z)(Y - g(0 ,X))}{1 - m(x)}.
284
284
285
+
286
+ Potential quantiles (PQs)
287
+ **********************************
288
+
289
+ For ``DoubleMLPQ `` the only valid option is ``score='PQ' ``. For ``treatment=d `` with :math: `d\in \{ 0 ,1 \}` and
290
+ a quantile :math: `\tau\in (0 ,1 )` this implements the nonlinear score function:
291
+
292
+ .. math ::
293
+
294
+ \psi (W; \theta , \eta ) := g_{d}(X, \tilde {\theta }) + \frac {1 \{ D=d\} }{m(X)}(1 \{ Y\le \theta \} - g_d(X, \tilde {\theta })) - \tau
295
+
296
+
297
+ where :math: `\eta =(g_d,m)` with true values
298
+
299
+ .. math ::
300
+
301
+ g_{d,0 }(X, \theta _0 ) &= \mathbb {E}[1 \{ Y\le \theta _0 \}|X, D=d]
302
+
303
+ m_0 (X) &= P(D=d|X).
304
+
305
+ Remark that :math: `g_{d,0 }(X,\theta _0 )` depends on the target parameter :math: `\theta _0 `, such that
306
+ the score is estimated with a preliminary estimate :math: `\tilde {\theta }`. For further details, see Kallus et al., (2019).
307
+
308
+
309
+ Local potential quantiles (LPQs)
310
+ **********************************
311
+
312
+ For ``DoubleMLLPQ `` the only valid option is ``score='LPQ' ``. For ``treatment=d `` with :math: `d\in \{ 0 ,1 \}`, instrument :math: `Z` and
313
+ a quantile :math: `\tau\in (0 ,1 )` this implements the nonlinear score function:
314
+
315
+ .. math ::
316
+
317
+ \psi (W; \theta , \eta ) :=& \Big (g_{d, Z=1 }(X, \tilde {\theta }) - g_{d, Z=0 }(X, \tilde {\theta }) + \frac {Z}{m(X)}(1 \{ D=d\} \cdot 1 \{ Y\le \theta \} - g_{d, Z=1 }(X, \tilde {\theta }))
318
+
319
+ &\quad - \frac {1 -Z}{1 -m(X)}(1 \{ D=d\} \cdot 1 \{ Y\le \theta \} - g_{d, Z=0 }(X, \tilde {\theta }))\Big ) \cdot \frac {2 d -1 }{\gamma } - \tau
320
+
321
+
322
+ where :math: `\eta =(g_{d,Z=1 }, g_{d,Z=0 }, m, \gamma )` with true values
323
+
324
+ .. math ::
325
+
326
+ g_{d,Z=z,0 }(X, \theta _0 ) &= \mathbb {E}[1 \{ D=d\} \cdot 1 \{ Y\le \theta _0 \}|X, Z=z],\quad z\in \{ 0 ,1 \}
327
+
328
+ m_{Z=z,0 }(X) &= P(D=d|X, Z=z),\quad z\in \{ 0 ,1 \}
329
+
330
+ m_0 (X) &= P(Z=1 |X)
331
+
332
+ \gamma _0 &= \mathbb {E}[P(D=d|X, Z=1 ) - P(D=d|X, Z=0 )].
333
+
334
+ Further, the compliance probability :math: `\gamma _0 ` is estimated with the two additional nuisance components
335
+
336
+ .. math ::
337
+
338
+ m_{Z=z,0 }(X) = P(D=d|X, Z=z),\quad z\in \{ 0 ,1 \}.
339
+
340
+ Remark that :math: `g_{d,Z=z,0 }(X, \theta _0 )` depends on the target parameter :math: `\theta _0 `, such that
341
+ the score is estimated with a preliminary estimate :math: `\tilde {\theta }`. For further details, see Kallus et al., (2019).
342
+
343
+
344
+ Conditional value at risk (CVaR)
345
+ **********************************
346
+
347
+ For ``DoubleMLCVAR `` the only valid option is ``score='CVAR' ``. For ``treatment=d `` with :math: `d\in \{ 0 ,1 \}` and
348
+ a quantile :math: `\tau\in (0 ,1 )` this implements the score function:
349
+
350
+ .. math ::
351
+
352
+ \psi (W; \theta , \eta ) := g_{d}(X, \gamma ) + \frac {1 \{ D=d\} }{m(X)}(\max (\gamma , (1 - \tau )^{-1 }(Y - \tau \gamma )) - g_d(X, \gamma )) - \theta
353
+
354
+ where :math: `\eta =(g_d,m,\gamma )` with true values
355
+
356
+ .. math ::
357
+
358
+ g_{d,0 }(X, \gamma _0 ) &= \mathbb {E}[\max (\gamma _0 , (1 - \tau )^{-1 }(Y - \tau \gamma _0 ))|X, D=d]
359
+
360
+ m_0 (X) &= P(D=d|X)
361
+
362
+ and :math: `\gamma _0 ` being the potential quantile of :math: `Y(d)`. As for potential quantiles, the estimate :math: `g_d` is constructed via
363
+ a preliminary estimate of :math: `\gamma _0 `. For further details, see Kallus et al., (2019).
364
+
285
365
Specifying alternative score functions via callables
286
366
++++++++++++++++++++++++++++++++++++++++++++++++++++
287
367
0 commit comments