@@ -288,12 +288,12 @@ Difference-in-Differences for Panel Data
288
288
For the difference-in-differences model implemented in ``DoubleMLDID `` one can choose between
289
289
``score='observational' `` and ``score='experimental' ``.
290
290
291
- ``score='observational' `` implements the score function:
291
+ ``score='observational' `` implements the score function (dropping the unit index :math: `i`) :
292
292
293
293
.. math ::
294
294
295
295
\psi (W,\theta , \eta )
296
- :&= -\frac {D}{\mathbb {E}_n[D]}\theta + \left (\frac {D}{\mathbb {E}_n[D]} - \frac {\frac {m(X) (1 -D)}{1 -m(X)}}{\mathbb {E}_n\left [\frac {m(X) (1 -D)}{1 -m(X)}\right ]}\right ) \left (Y( 1 )-Y( 0 ) - g(0 ,X)\right )
296
+ :&= -\frac {D}{\mathbb {E}_n[D]}\theta + \left (\frac {D}{\mathbb {E}_n[D]} - \frac {\frac {m(X) (1 -D)}{1 -m(X)}}{\mathbb {E}_n\left [\frac {m(X) (1 -D)}{1 -m(X)}\right ]}\right ) \left (Y_ 1 - Y_ 0 - g(0 ,X)\right )
297
297
298
298
&= \psi _a(W; \eta ) \theta + \psi _b(W; \eta )
299
299
@@ -303,21 +303,21 @@ where the components of the linear score are
303
303
304
304
\psi _a(W; \eta ) &= - \frac {D}{\mathbb {E}_n[D]},
305
305
306
- \psi _b(W; \eta ) &= \left (\frac {D}{\mathbb {E}_n[D]} - \frac {\frac {m(X) (1 -D)}{1 -m(X)}}{\mathbb {E}_n\left [\frac {m(X) (1 -D)}{1 -m(X)}\right ]}\right ) \left (Y( 1 )-Y( 0 ) - g(0 ,X)\right )
306
+ \psi _b(W; \eta ) &= \left (\frac {D}{\mathbb {E}_n[D]} - \frac {\frac {m(X) (1 -D)}{1 -m(X)}}{\mathbb {E}_n\left [\frac {m(X) (1 -D)}{1 -m(X)}\right ]}\right ) \left (Y_ 1 - Y_ 0 - g(0 ,X)\right )
307
307
308
308
and the nuisance elements :math: `\eta =(g, m)` are defined as
309
309
310
310
.. math ::
311
311
312
- g_{0 }(0 , X) &= \mathbb {E}[Y( 1 )-Y( 0 ) |D=0 , X]
312
+ g_{0 }(0 , X) &= \mathbb {E}[Y_ 1 - Y_ 0 |D=0 , X]
313
313
314
314
m_0 (X) &= P(D=1 |X).
315
315
316
316
If ``in_sample_normalization='False' ``, the score is set to
317
317
318
318
.. math ::
319
319
320
- \psi (W,\theta ,\eta ) &= - \frac {D}{p}\theta + \frac {D - m(X)}{p(1 -m(X))}\left (Y( 1 )-Y( 0 ) -g(0 ,X)\right )
320
+ \psi (W,\theta ,\eta ) &= - \frac {D}{p}\theta + \frac {D - m(X)}{p(1 -m(X))}\left (Y_ 1 - Y_ 0 -g(0 ,X)\right )
321
321
322
322
&= \psi _a(W; \eta ) \theta + \psi _b(W; \eta )
323
323
@@ -330,7 +330,7 @@ implements the score function:
330
330
.. math ::
331
331
332
332
\psi (W,\theta , \eta )
333
- :=\; &-\theta + \left (\frac {D}{\mathbb {E}_n[D]} - \frac {\frac {m(X) (1 -D)}{1 -m(X)}}{\mathbb {E}_n\left [\frac {m(X) (1 -D)}{1 -m(X)}\right ]}\right )\left (Y( 1 )-Y( 0 ) -g(0 ,X)\right )
333
+ :=\; &-\theta + \left (\frac {D}{\mathbb {E}_n[D]} - \frac {\frac {m(X) (1 -D)}{1 -m(X)}}{\mathbb {E}_n\left [\frac {m(X) (1 -D)}{1 -m(X)}\right ]}\right )\left (Y_ 1 - Y_ 0 -g(0 ,X)\right )
334
334
335
335
&+ \left (1 - \frac {D}{\mathbb {E}_n[D]}\right ) \left (g(1 ,X) - g(0 ,X)\right )
336
336
@@ -342,17 +342,17 @@ where the components of the linear score are
342
342
343
343
\psi _a(W; \eta ) \;= &- 1 ,
344
344
345
- \psi _b(W; \eta ) \;= &\left (\frac {D}{\mathbb {E}_n[D]} - \frac {\frac {m(X) (1 -D)}{1 -m(X)}}{\mathbb {E}_n\left [\frac {m(X) (1 -D)}{1 -m(X)}\right ]}\right )\left (Y( 1 )-Y( 0 ) -g(0 ,X)\right )
345
+ \psi _b(W; \eta ) \;= &\left (\frac {D}{\mathbb {E}_n[D]} - \frac {\frac {m(X) (1 -D)}{1 -m(X)}}{\mathbb {E}_n\left [\frac {m(X) (1 -D)}{1 -m(X)}\right ]}\right )\left (Y_ 1 - Y_ 0 -g(0 ,X)\right )
346
346
347
347
&+ \left (1 - \frac {D}{\mathbb {E}_n[D]}\right ) \left (g(1 ,X) - g(0 ,X)\right )
348
348
349
349
and the nuisance elements :math: `\eta =(g, m)` are defined as
350
350
351
351
.. math ::
352
352
353
- g_{0 }(0 , X) &= \mathbb {E}[Y( 1 )-Y( 0 ) |D=0 , X]
353
+ g_{0 }(0 , X) &= \mathbb {E}[Y_ 1 - Y_ 0 |D=0 , X]
354
354
355
- g_{0 }(1 , X) &= \mathbb {E}[Y( 1 )-Y( 0 ) |D=1 , X]
355
+ g_{0 }(1 , X) &= \mathbb {E}[Y_ 1 - Y_ 0 |D=1 , X]
356
356
357
357
m_0 (X) &= P(D=1 |X).
358
358
@@ -361,7 +361,7 @@ Analogously, if ``in_sample_normalization='False'``, the score is set to
361
361
.. math ::
362
362
363
363
\psi (W,\theta , \eta )
364
- :=\; &-\theta + \frac {D - m(X)}{p(1 -m(X))}\left (Y( 1 )-Y( 0 ) -g(0 ,X)\right )
364
+ :=\; &-\theta + \frac {D - m(X)}{p(1 -m(X))}\left (Y_ 1 - Y_ 0 -g(0 ,X)\right )
365
365
366
366
&+ \left (1 - \frac {D}{p}\right ) \left (g(1 ,X) - g(0 ,X)\right )
367
367
@@ -376,7 +376,7 @@ Difference-in-Differences for repeated cross-sections
376
376
For the difference-in-differences model implemented in ``DoubleMLDIDCS `` one can choose between
377
377
``score='observational' `` and ``score='experimental' ``.
378
378
379
- ``score='observational' `` implements the score function:
379
+ ``score='observational' `` implements the score function (dropping the unit index :math: `i`) :
380
380
381
381
.. math ::
382
382
0 commit comments