Skip to content

Commit 3aeac11

Browse files
committed
Update scores.rst
1 parent a2dde0a commit 3aeac11

File tree

1 file changed

+11
-11
lines changed

1 file changed

+11
-11
lines changed

doc/guide/scores.rst

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -288,12 +288,12 @@ Difference-in-Differences for Panel Data
288288
For the difference-in-differences model implemented in ``DoubleMLDID`` one can choose between
289289
``score='observational'`` and ``score='experimental'``.
290290

291-
``score='observational'`` implements the score function:
291+
``score='observational'`` implements the score function (dropping the unit index :math:`i`):
292292

293293
.. math::
294294
295295
\psi(W,\theta, \eta)
296-
:&= -\frac{D}{\mathbb{E}_n[D]}\theta + \left(\frac{D}{\mathbb{E}_n[D]} - \frac{\frac{m(X) (1-D)}{1-m(X)}}{\mathbb{E}_n\left[\frac{m(X) (1-D)}{1-m(X)}\right]}\right) \left(Y(1)-Y(0) - g(0,X)\right)
296+
:&= -\frac{D}{\mathbb{E}_n[D]}\theta + \left(\frac{D}{\mathbb{E}_n[D]} - \frac{\frac{m(X) (1-D)}{1-m(X)}}{\mathbb{E}_n\left[\frac{m(X) (1-D)}{1-m(X)}\right]}\right) \left(Y_1 - Y_0 - g(0,X)\right)
297297
298298
&= \psi_a(W; \eta) \theta + \psi_b(W; \eta)
299299
@@ -303,21 +303,21 @@ where the components of the linear score are
303303
304304
\psi_a(W; \eta) &= - \frac{D}{\mathbb{E}_n[D]},
305305
306-
\psi_b(W; \eta) &= \left(\frac{D}{\mathbb{E}_n[D]} - \frac{\frac{m(X) (1-D)}{1-m(X)}}{\mathbb{E}_n\left[\frac{m(X) (1-D)}{1-m(X)}\right]}\right) \left(Y(1)-Y(0) - g(0,X)\right)
306+
\psi_b(W; \eta) &= \left(\frac{D}{\mathbb{E}_n[D]} - \frac{\frac{m(X) (1-D)}{1-m(X)}}{\mathbb{E}_n\left[\frac{m(X) (1-D)}{1-m(X)}\right]}\right) \left(Y_1 - Y_0 - g(0,X)\right)
307307
308308
and the nuisance elements :math:`\eta=(g, m)` are defined as
309309

310310
.. math::
311311
312-
g_{0}(0, X) &= \mathbb{E}[Y(1)-Y(0)|D=0, X]
312+
g_{0}(0, X) &= \mathbb{E}[Y_1 - Y_0|D=0, X]
313313
314314
m_0(X) &= P(D=1|X).
315315
316316
If ``in_sample_normalization='False'``, the score is set to
317317

318318
.. math::
319319
320-
\psi(W,\theta,\eta) &= - \frac{D}{p}\theta + \frac{D - m(X)}{p(1-m(X))}\left(Y(1)-Y(0) -g(0,X)\right)
320+
\psi(W,\theta,\eta) &= - \frac{D}{p}\theta + \frac{D - m(X)}{p(1-m(X))}\left(Y_1 - Y_0 -g(0,X)\right)
321321
322322
&= \psi_a(W; \eta) \theta + \psi_b(W; \eta)
323323
@@ -330,7 +330,7 @@ implements the score function:
330330
.. math::
331331
332332
\psi(W,\theta, \eta)
333-
:=\; &-\theta + \left(\frac{D}{\mathbb{E}_n[D]} - \frac{\frac{m(X) (1-D)}{1-m(X)}}{\mathbb{E}_n\left[\frac{m(X) (1-D)}{1-m(X)}\right]}\right)\left(Y(1)-Y(0) -g(0,X)\right)
333+
:=\; &-\theta + \left(\frac{D}{\mathbb{E}_n[D]} - \frac{\frac{m(X) (1-D)}{1-m(X)}}{\mathbb{E}_n\left[\frac{m(X) (1-D)}{1-m(X)}\right]}\right)\left(Y_1 - Y_0 -g(0,X)\right)
334334
335335
&+ \left(1 - \frac{D}{\mathbb{E}_n[D]}\right) \left(g(1,X) - g(0,X)\right)
336336
@@ -342,17 +342,17 @@ where the components of the linear score are
342342
343343
\psi_a(W; \eta) \;= &- 1,
344344
345-
\psi_b(W; \eta) \;= &\left(\frac{D}{\mathbb{E}_n[D]} - \frac{\frac{m(X) (1-D)}{1-m(X)}}{\mathbb{E}_n\left[\frac{m(X) (1-D)}{1-m(X)}\right]}\right)\left(Y(1)-Y(0) -g(0,X)\right)
345+
\psi_b(W; \eta) \;= &\left(\frac{D}{\mathbb{E}_n[D]} - \frac{\frac{m(X) (1-D)}{1-m(X)}}{\mathbb{E}_n\left[\frac{m(X) (1-D)}{1-m(X)}\right]}\right)\left(Y_1 - Y_0 -g(0,X)\right)
346346
347347
&+ \left(1 - \frac{D}{\mathbb{E}_n[D]}\right) \left(g(1,X) - g(0,X)\right)
348348
349349
and the nuisance elements :math:`\eta=(g, m)` are defined as
350350

351351
.. math::
352352
353-
g_{0}(0, X) &= \mathbb{E}[Y(1)-Y(0)|D=0, X]
353+
g_{0}(0, X) &= \mathbb{E}[Y_1 - Y_0|D=0, X]
354354
355-
g_{0}(1, X) &= \mathbb{E}[Y(1)-Y(0)|D=1, X]
355+
g_{0}(1, X) &= \mathbb{E}[Y_1 - Y_0|D=1, X]
356356
357357
m_0(X) &= P(D=1|X).
358358
@@ -361,7 +361,7 @@ Analogously, if ``in_sample_normalization='False'``, the score is set to
361361
.. math::
362362
363363
\psi(W,\theta, \eta)
364-
:=\; &-\theta + \frac{D - m(X)}{p(1-m(X))}\left(Y(1)-Y(0) -g(0,X)\right)
364+
:=\; &-\theta + \frac{D - m(X)}{p(1-m(X))}\left(Y_1 - Y_0 -g(0,X)\right)
365365
366366
&+ \left(1 - \frac{D}{p}\right) \left(g(1,X) - g(0,X)\right)
367367
@@ -376,7 +376,7 @@ Difference-in-Differences for repeated cross-sections
376376
For the difference-in-differences model implemented in ``DoubleMLDIDCS`` one can choose between
377377
``score='observational'`` and ``score='experimental'``.
378378

379-
``score='observational'`` implements the score function:
379+
``score='observational'`` implements the score function (dropping the unit index :math:`i`):
380380

381381
.. math::
382382

0 commit comments

Comments
 (0)