Skip to content

Commit 471f7d4

Browse files
committed
update sensitivity documentation
1 parent 8484784 commit 471f7d4

File tree

1 file changed

+31
-1
lines changed

1 file changed

+31
-1
lines changed

doc/guide/sensitivity.rst

Lines changed: 31 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -113,7 +113,14 @@ As :math:`\sigma_0^2` and :math:`\nu_0^2` do not depend on the unobserved confou
113113

114114
- ``cf_d``:math:`:=1 - \frac{\mathbb{E}\big[\alpha(W)^2\big]}{\mathbb{E}\big[\tilde{\alpha}(\tilde{W})^2\big]}` measures the proportion of residual variance in the Riesz representer :math:`\tilde{\alpha}(\tilde{W})` generated by the latent confounders :math:`A`
115115

116-
For model-specific interpretations of ``cf_d``, see the corresponding chapters (e.g. :ref:`sensitivity_plr`).
116+
.. note::
117+
- ``cf_y`` has the interpretation as the *nonparametric partial* :math:`R^2` *of* :math:`A` *with* :math:`Y` *given :math:`(D,X)`*
118+
.. math::
119+
120+
\frac{\textrm{Var}(\mathbb{E}[Y|D,X,A]) - \textrm{Var}(\mathbb{E}[Y|D,X])}{\textrm{Var}(Y)-\textrm{Var}(\mathbb{E}[Y|D,X])}
121+
122+
- For model-specific interpretations of ``cf_d`` or :math:`C_D^2`, see the corresponding chapters (e.g. :ref:`sensitivity_plr`).
123+
117124
Consequently, for given values ``cf_y`` and ``cf_d``, we can create lower and upper bounds for target parameter :math:`\tilde{\theta}_0` of the form
118125

119126
.. math::
@@ -282,6 +289,19 @@ Therefore,
282289

283290
- ``cf_d``:math:`:=\frac{\mathbb{E}\big[\big(\mathbb{E}[D|X,A] - \mathbb{E}[D|X]\big)^2\big]}{\mathbb{E}\big[\big(D - \mathbb{E}[D|X]\big)^2\big]}` measures the proportion of residual variance in the treatment :math:`D` explained by the latent confounders :math:`A`
284291

292+
.. note::
293+
In the :ref:`plr-model`, both ``cf_y`` and ``cf_d`` can be interpreted as *nonparametric partial* :math:`R^2`
294+
295+
- ``cf_y`` has the interpretation as the *nonparametric partial* :math:`R^2` *of* :math:`A` *with* :math:`Y` *given* :math:`(D,X)`
296+
.. math::
297+
298+
\frac{\textrm{Var}(\mathbb{E}[Y|D,X,A]) - \textrm{Var}(\mathbb{E}[Y|D,X])}{\textrm{Var}(Y)-\textrm{Var}(\mathbb{E}[Y|D,X])}
299+
300+
- ``cf_d`` has the interpretation as the *nonparametric partial* :math:`R^2` *of* :math:`A` *with* :math:`D` *given* :math:`X`
301+
.. math::
302+
303+
\frac{\textrm{Var}(\mathbb{E}[D|X,A]) - \textrm{Var}(\mathbb{E}[D|X])}{\textrm{Var}(D)-\textrm{Var}(\mathbb{E}[D|X])}
304+
285305
Using the partially linear regression model with ``score='partialling out'`` the ``nuisance_elements`` are implemented in the following form
286306

287307
.. math::
@@ -326,6 +346,16 @@ This implies the following representations
326346
327347
\alpha(W) &= \bigg(\frac{D}{m(X)} - \frac{1-D}{1-m(X)}\bigg) \mathbb{E}[\omega(D,X)|X].
328348
349+
.. note::
350+
In the :ref:`irm-model` with the ATE, it holds
351+
352+
.. math::
353+
354+
C_D^2= \frac{\mathbb{E}\Big[\big(P(D=1|X,A)(1-P(D=1|X,A))\big)^{-1}\Big]}{\mathbb{E}\Big[\big(P(D=1|X)(1-P(D=1|X))\big)^{-1}\Big]} - 1
355+
356+
which is the *average gain in conditional precision to predict* :math:`D` *by using* :math:`A` *in addition to* :math:`X`.
357+
This can be used to choose ``cf_d``:math:`:=\frac{C_D^2}{1 + C_D^2}`.
358+
329359
The ``nuisance_elements`` are then computed with plug-in versions according to the general :ref:`sensitivity_implementation`.
330360
For ``score='ATE'``, the weights are set to one
331361

0 commit comments

Comments
 (0)