|
| 1 | +.. _sensitivity: |
| 2 | + |
| 3 | +Sensitivity analysis |
| 4 | +------------------------ |
| 5 | + |
| 6 | +The :ref:`DoubleML <doubleml_package>` package implements sensitivity analysis with respect to ommitted variable bias |
| 7 | +based on `Chernozhukov et al. (2022) <https://www.nber.org/papers/w30302>`_. |
| 8 | + |
| 9 | +General algorithm |
| 10 | ++++++++++++++++++ |
| 11 | + |
| 12 | +Currently, the sensitivity analysis is only available for linear models. |
| 13 | + |
| 14 | +Assume that we can write the model in the following representation |
| 15 | + |
| 16 | +.. math:: |
| 17 | +
|
| 18 | + \theta_0 = \mathbb{E}[m(W,g_0)], |
| 19 | +
|
| 20 | +where usually :math:`g_0(W) = \mathbb{E}[Y|X, D]`. |
| 21 | +As long as :math:`\mathbb{E}[m(W,f)]` is a continuous linear functional of :math:`f`, there exists a unique square |
| 22 | +integrable random variable :math:`\alpha_0(W)`, called Riesz representer |
| 23 | +(see `Riesz representation theorem <https://en.wikipedia.org/wiki/Riesz_representation_theorem>`_), such that |
| 24 | + |
| 25 | +.. math:: |
| 26 | +
|
| 27 | + \theta_0 = \mathbb{E}[g_0(W)\alpha_0(W)]. |
| 28 | +
|
| 29 | +The target parameter :math:`\theta_0` has the following representation |
| 30 | + |
| 31 | +.. math:: |
| 32 | +
|
| 33 | + \theta_0 = \mathbb{E}[m(W,g_0) + (Y-g_0(W))\alpha_0(W)], |
| 34 | +
|
| 35 | +which corresponds to a Neyman orthogonal score function (orthogonal with respect to nuisance elements :math:`(g, \alpha)`). |
| 36 | +To bound the ommited variable bias, the following further elements are needed. |
| 37 | +The variance of the main regression |
| 38 | + |
| 39 | +.. math:: |
| 40 | +
|
| 41 | + \sigma_0^2 := \mathbb{E}[(Y-g_0(W))^2] |
| 42 | +
|
| 43 | +and the second moment of the Riesz representer |
| 44 | + |
| 45 | +.. math:: |
| 46 | +
|
| 47 | + \nu_0^2 := \mathbb{E}[\alpha_0(W)^2] =2\mathbb{E}[m(W,\alpha_0)] - \mathbb{E}[\alpha_0(W)^2]. |
| 48 | +
|
| 49 | +Both representations are Neyman orthogonal with respect to :math:`g` and :math:`\alpha`, respectively. |
| 50 | +Further, define the corresponding score functions |
| 51 | + |
| 52 | +.. math:: |
| 53 | +
|
| 54 | + \psi_{\sigma^2}(W, \sigma^2, g) &:= (Y-g_0(W))^2 - \sigma^2\\ |
| 55 | + \psi_{\nu^2}(W, \nu^2, \alpha) &:= 2m(W,\alpha) - \alpha(W)^2 - \nu^2. |
| 56 | +
|
| 57 | +Recall that the parameter :math:`\theta_0` is identified via the moment condition |
| 58 | + |
| 59 | +.. math:: |
| 60 | +
|
| 61 | + \theta_0 = \mathbb{E}[m(W,g_0)]. |
| 62 | +
|
| 63 | +If :math:`W=(Y, D, X)` does not include all confounding variables, the "true" target parameter :math:`\tilde{\theta}_0` |
| 64 | +would only be identified via the extendend (or "long") form |
| 65 | + |
| 66 | +.. math:: |
| 67 | +
|
| 68 | + \tilde{\theta}_0 = \mathbb{E}[m(\tilde{W},\tilde{g}_0)], |
| 69 | +
|
| 70 | +where :math:`\tilde{W}=(Y, D, X, A)` includes the unobserved counfounders :math:`A`. |
| 71 | +In Theorem 2 of their paper `Chernozhukov et al. (2022) <https://www.nber.org/papers/w30302>`_ are able to bound the ommited variable bias |
| 72 | + |
| 73 | +.. math:: |
| 74 | +
|
| 75 | + |\tilde{\theta}_0 -\theta_0|^2 = \rho^2 B^2, |
| 76 | +
|
| 77 | +where |
| 78 | + |
| 79 | +.. math:: |
| 80 | +
|
| 81 | + B^2 := \mathbb{E}\Big[\big(g(W) - \tilde{g}(\tilde{W})\big)^2\Big]\mathbb{E}\Big[\big(\alpha(W) - \tilde{\alpha}(\tilde{W})\big)^2\Big], |
| 82 | +
|
| 83 | +denotes the product of additional variations in the outcome regression and Riesz representer generated by ommited confounders and |
| 84 | + |
| 85 | +.. math:: |
| 86 | +
|
| 87 | + \rho^2 := \textrm{Cor}^2\Big(g(W) - \tilde{g}(\tilde{W}),\alpha(W) - \tilde{\alpha}(\tilde{W})\Big), |
| 88 | +
|
| 89 | +denotes the correlations between the deviations generated by ommited confounders. Further, the bound can be expressed as |
| 90 | + |
| 91 | +.. math:: |
| 92 | +
|
| 93 | + B^2 := S^2 C_Y^2 C_D^2, |
| 94 | +
|
| 95 | +where |
| 96 | + |
| 97 | +.. math:: |
| 98 | +
|
| 99 | + S^2 &:= \mathbb{E}\Big[\big(Y - g(W)\big)^2\Big]\mathbb{E}\big[\alpha(W)^2\big] |
| 100 | +
|
| 101 | + C_Y^2 &:= R^2_{Y-g \sim \tilde{g}-g} |
| 102 | +
|
| 103 | + C_D^2 &:= \frac{1 - R^2_{\tilde{\alpha} \sim \alpha}}{R^2_{\tilde{\alpha} \sim \alpha}}. |
| 104 | +
|
| 105 | +Here, fo general random variables :math:`U` and :math:`V` |
| 106 | + |
| 107 | +.. math:: |
| 108 | +
|
| 109 | + R^2_{U \sim V} := \frac{\textrm{Var}(V)}{\textrm{Var}(U)} |
| 110 | +
|
| 111 | +is defined as the variance ratio. |
| 112 | + |
| 113 | +Let :math:`\psi(W,\theta,\eta)` the (correctly scaled) score function for the target parameter :math:`\theta_0`. |
| 114 | +Finally, for specified values of :math:`C_Y^2` and :math:`C_D^2` |
| 115 | + |
| 116 | +For more detail and interpretations see `Chernozhukov et al. (2022) <https://www.nber.org/papers/w30302>`_. |
| 117 | + |
| 118 | +.. _sensitivity-implementation: |
| 119 | + |
| 120 | +Implemented sensitivity procedures |
| 121 | ++++++++++++++++++++++++++++++++++++ |
| 122 | + |
| 123 | +This section contains the implementation details for each specific model. |
| 124 | + |
| 125 | +.. _plr-sensitivity: |
| 126 | + |
| 127 | +Partially linear regression model (PLR) |
| 128 | +*************************************** |
| 129 | + |
| 130 | +.. _irm-sensitivity: |
| 131 | + |
| 132 | +Interactive regression model (IRM) |
| 133 | +********************************** |
0 commit comments