Skip to content

Commit 887159b

Browse files
committed
add example for sensitivity
1 parent 62a3c65 commit 887159b

File tree

3 files changed

+21
-1
lines changed

3 files changed

+21
-1
lines changed

doc/examples/index.rst

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -35,6 +35,7 @@ These are case studies with the Python package :ref:`DoubleML <doubleml_package>
3535
py_double_ml_pq.ipynb
3636
py_double_ml_cvar.ipynb
3737
py_double_ml_learner.ipynb
38+
py_double_ml_sensitivity.ipynb
3839

3940
|start-h3| Sandbox |end-h3|
4041

doc/examples/py_double_ml_sensitivity.ipynb

Lines changed: 14 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
"cell_type": "markdown",
66
"metadata": {},
77
"source": [
8-
"# Python: DoubleSensitivity Analysis\n",
8+
"# Python: Sensitivity Analysis\n",
99
"\n",
1010
"This notebook illustrates the sensitivity analysis tools with the partiallly linear regression model (PLR)."
1111
]
@@ -31,6 +31,19 @@
3131
"from doubleml.datasets import make_confounded_plr_data"
3232
]
3333
},
34+
{
35+
"attachments": {},
36+
"cell_type": "markdown",
37+
"metadata": {},
38+
"source": [
39+
"## Data\n",
40+
"\n",
41+
"For illustration purposes, we will work with generated data. This enables us to set the counfounding strength, such that we can correctly access quality of e.g. the robustness values.\n",
42+
"The data will be generated via `make_confounded_plr_data` and set the confounding values to `cf_y=0.1` and `cf_d`.\n",
43+
"\n",
44+
"In"
45+
]
46+
},
3447
{
3548
"cell_type": "code",
3649
"execution_count": null,

doc/literature/literature.rst

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -135,6 +135,12 @@ Double machine learning literature
135135
:opticon:`link` :link-badge:`https://doi.org/10.1016/j.jeconom.2020.06.003,"URL",cls=badge-dark`
136136
|hr|
137137

138+
- Victor Chernozhukov, Carlos Cinelli, Whitney Newey, Amit Sharma, Vasilis Syrgkanis |br|
139+
**Long Story Short: Omitted Variable Bias in Causal Machine Learning** |br|
140+
*No. w30302. National Bureau of Economic Research, 2022* |br|
141+
:opticon:`link` :link-badge:`https://doi.org/10.3386/w30302,"URL",cls=badge-dark`
142+
|hr|
143+
138144
- Vira Semenova, Victor Chernozhukov |br|
139145
**Debiased machine learning of conditional average treatment effects and other causal functions** |br|
140146
*The Econometrics Journal, 24(2), Pages 264-289, 2021* |br|

0 commit comments

Comments
 (0)