Skip to content

Commit d63ea86

Browse files
committed
update literature
1 parent 5319557 commit d63ea86

File tree

2 files changed

+15
-29
lines changed

2 files changed

+15
-29
lines changed

doc/examples/py_double_ml_cate.ipynb

Lines changed: 4 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -12,14 +12,15 @@
1212
]
1313
},
1414
{
15+
"attachments": {},
1516
"cell_type": "markdown",
1617
"metadata": {
1718
"collapsed": false
1819
},
1920
"source": [
2021
"## Data\n",
2122
"\n",
22-
"We define a data generating process to create synthetic data to compare the estimates to the true effect. The data generating process is based on the Monte Carlo simulation from this [paper](https://arxiv.org/abs/1806.03467) and this implementation from [EconML](https://github.com/microsoft/EconML)."
23+
"We define a data generating process to create synthetic data to compare the estimates to the true effect. The data generating process is based on the Monte Carlo simulation from [Oprescu et al. (2019)](http://proceedings.mlr.press/v97/oprescu19a.html) and this [notebook](https://github.com/py-why/EconML/blob/main/notebooks/Causal%20Forest%20and%20Orthogonal%20Random%20Forest%20Examples.ipynb) from [EconML](https://github.com/py-why/EconML)."
2324
]
2425
},
2526
{
@@ -80,33 +81,6 @@
8081
" return te\n",
8182
"\n",
8283
"def create_synthetic_data(n_samples=200, n_w=30, support_size=5, n_x=1):\n",
83-
" \"\"\"\n",
84-
" Creates a simple synthetic example for conditional treatment effects.\n",
85-
"\n",
86-
" Parameters\n",
87-
" ----------\n",
88-
" n_samples : int\n",
89-
" Number of samples.\n",
90-
" Default is ``200``.\n",
91-
"\n",
92-
" n_w : int\n",
93-
" Dimension of covariates.\n",
94-
" Default is ``30``.\n",
95-
"\n",
96-
" support_size : int\n",
97-
" Number of relevant covariates.\n",
98-
" Default is ``5``.\n",
99-
"\n",
100-
" n_x : int\n",
101-
" Dimension of treatment variable.\n",
102-
" Default is ``1``.\n",
103-
"\n",
104-
" Returns\n",
105-
" -------\n",
106-
" data : pd.DataFrame\n",
107-
" A data frame.\n",
108-
"\n",
109-
" \"\"\"\n",
11084
" # Outcome support\n",
11185
" # With the next two lines we are effectively choosing the matrix gamma in the example\n",
11286
" support_y = np.random.choice(np.arange(n_w), size=support_size, replace=False)\n",
@@ -219,12 +193,13 @@
219193
]
220194
},
221195
{
196+
"attachments": {},
222197
"cell_type": "markdown",
223198
"metadata": {
224199
"collapsed": false
225200
},
226201
"source": [
227-
"To estimate the CATE, we rely on the best-linear-predictor of the linear score as in [Semenova et al.](https://doi.org/10.1093/ectj/utaa027) To approximate the target function $g(x)$ with a linear form, we have to define a data frame of basis functions. Here, we rely on [patsy](https://patsy.readthedocs.io/en/latest/) to construct a suitable basis of [B-splines](https://en.wikipedia.org/wiki/B-spline)."
202+
"To estimate the CATE, we rely on the best-linear-predictor of the linear score as in [Semenova et al. (2021)](https://doi.org/10.1093/ectj/utaa027) To approximate the target function $g(x)$ with a linear form, we have to define a data frame of basis functions. Here, we rely on [patsy](https://patsy.readthedocs.io/en/latest/) to construct a suitable basis of [B-splines](https://en.wikipedia.org/wiki/B-spline)."
228203
]
229204
},
230205
{

doc/literature/literature.rst

Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -103,6 +103,12 @@ Double machine learning literature
103103
:link-badge:`https://arxiv.org/abs/1909.03489,"arXiv",cls=badge-dark`
104104
|hr|
105105

106+
- Nathan Kallus, Xiaojie Mao, Masatoshi Uehara |br|
107+
**Localized Debiased Machine Learning: Efficient Inference on Quantile Treatment Effects and Beyond** |br|
108+
*arXiv preprint arXiv:1912.12945 [stat.ML], 2019* |br|
109+
:opticon:`link` :link-badge:`https://doi.org/10.48550/arXiv.1912.12945,"arXiv",cls=badge-dark`
110+
|hr|
111+
106112
- Nathan Kallus, Masatoshi Uehara |br|
107113
**Double Reinforcement Learning for Efficient Off-Policy Evaluation in Markov Decision Processes** |br|
108114
*Journal of Machine Learning Research 21, 1-63, 2020* |br|
@@ -123,6 +129,11 @@ Double machine learning literature
123129
:link-badge:`https://arxiv.org/abs/1711.00342,"arXiv",cls=badge-dark`
124130
|hr|
125131

132+
- Vira Semenova, Victor Chernozhukov |br|
133+
**Debiased machine learning of conditional average treatment effects and other causal functions** |br|
134+
*The Econometrics Journal, 2021* |br|
135+
:opticon:`link` :link-badge:`https://doi.org/10.1093/ectj/utaa027,"URL",cls=badge-dark`
136+
126137
- Vira Semenova, Matt Goldman, Victor Chernozhukov, Matt Taddy |br|
127138
**Estimation and Inference on Heterogeneous Treatment Effects in High-Dimensional Dynamic Panels** |br|
128139
*arXiv preprint arXiv:1712.09988 [stat.ML], 2017* |br|

0 commit comments

Comments
 (0)