|
| 1 | +//=== accumulators.hpp - Implementation of accumulator kernels --*-C++-*-/===// |
| 2 | +// |
| 3 | +// Data Parallel Control (dpctl) |
| 4 | +// |
| 5 | +// Copyright 2020-2023 Intel Corporation |
| 6 | +// |
| 7 | +// Licensed under the Apache License, Version 2.0 (the "License"); |
| 8 | +// you may not use this file except in compliance with the License. |
| 9 | +// You may obtain a copy of the License at |
| 10 | +// |
| 11 | +// http://www.apache.org/licenses/LICENSE-2.0 |
| 12 | +// |
| 13 | +// Unless required by applicable law or agreed to in writing, software |
| 14 | +// distributed under the License is distributed on an "AS IS" BASIS, |
| 15 | +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 16 | +// See the License for the specific language governing permissions and |
| 17 | +// limitations under the License. |
| 18 | +// |
| 19 | +//===---------------------------------------------------------------------===// |
| 20 | +/// |
| 21 | +/// \file |
| 22 | +/// This file defines kernels for accumulators (cumulative sum, prod, etc.). |
| 23 | +//===---------------------------------------------------------------------===// |
| 24 | + |
| 25 | +#pragma once |
| 26 | +#include <CL/sycl.hpp> |
| 27 | +#include <array> |
| 28 | +#include <cstdint> |
| 29 | +#include <limits> |
| 30 | +#include <pybind11/pybind11.h> |
| 31 | +#include <utility> |
| 32 | +#include <vector> |
| 33 | + |
| 34 | +#include "utils/offset_utils.hpp" |
| 35 | +#include "utils/type_dispatch.hpp" |
| 36 | + |
| 37 | +namespace dpctl |
| 38 | +{ |
| 39 | +namespace tensor |
| 40 | +{ |
| 41 | +namespace kernels |
| 42 | +{ |
| 43 | +namespace accumulators |
| 44 | +{ |
| 45 | + |
| 46 | +namespace py = pybind11; |
| 47 | + |
| 48 | +using namespace dpctl::tensor::offset_utils; |
| 49 | + |
| 50 | +template <typename T> T ceiling_quotient(T n, T m) |
| 51 | +{ |
| 52 | + return (n + m - 1) / m; |
| 53 | +} |
| 54 | +template <typename T1, typename T2> T1 ceiling_quotient(T1 n, T2 m) |
| 55 | +{ |
| 56 | + return ceiling_quotient<T1>(n, static_cast<T1>(m)); |
| 57 | +} |
| 58 | + |
| 59 | +template <typename inputT, |
| 60 | + typename outputT, |
| 61 | + size_t n_wi, |
| 62 | + typename IndexerT, |
| 63 | + typename TransformerT> |
| 64 | +class inclusive_scan_rec_local_scan_krn; |
| 65 | + |
| 66 | +template <typename inputT, |
| 67 | + typename outputT, |
| 68 | + typename IndexerT, |
| 69 | + typename TransformerT> |
| 70 | +class inclusive_scan_rec_chunk_update_krn; |
| 71 | + |
| 72 | +template <typename inputT, typename outputT> struct NonZeroIndicator |
| 73 | +{ |
| 74 | + NonZeroIndicator() {} |
| 75 | + |
| 76 | + outputT operator()(const inputT &val) const |
| 77 | + { |
| 78 | + constexpr outputT out_one(1); |
| 79 | + constexpr outputT out_zero(0); |
| 80 | + constexpr inputT val_zero(0); |
| 81 | + |
| 82 | + return (val == val_zero) ? out_zero : out_one; |
| 83 | + } |
| 84 | +}; |
| 85 | + |
| 86 | +template <typename T> struct NoOpTransformer |
| 87 | +{ |
| 88 | + NoOpTransformer() {} |
| 89 | + |
| 90 | + T operator()(const T &val) const |
| 91 | + { |
| 92 | + return val; |
| 93 | + } |
| 94 | +}; |
| 95 | + |
| 96 | +/* |
| 97 | + * for integer type maskT, |
| 98 | + * output[j] = sum( input[s0 + i * s1], 0 <= i <= j) |
| 99 | + * for 0 <= j < n_elems |
| 100 | + */ |
| 101 | +template <typename inputT, |
| 102 | + typename outputT, |
| 103 | + size_t n_wi, |
| 104 | + typename IndexerT, |
| 105 | + typename TransformerT> |
| 106 | +sycl::event inclusive_scan_rec(sycl::queue exec_q, |
| 107 | + size_t n_elems, |
| 108 | + size_t wg_size, |
| 109 | + const inputT *input, |
| 110 | + outputT *output, |
| 111 | + size_t s0, |
| 112 | + size_t s1, |
| 113 | + IndexerT indexer, |
| 114 | + TransformerT transformer, |
| 115 | + std::vector<sycl::event> const &depends = {}) |
| 116 | +{ |
| 117 | + size_t n_groups = ceiling_quotient(n_elems, n_wi * wg_size); |
| 118 | + |
| 119 | + sycl::event inc_scan_phase1_ev = exec_q.submit([&](sycl::handler &cgh) { |
| 120 | + cgh.depends_on(depends); |
| 121 | + |
| 122 | + using slmT = sycl::local_accessor<size_t, 1>; |
| 123 | + |
| 124 | + auto lws = sycl::range<1>(wg_size); |
| 125 | + auto gws = sycl::range<1>(n_groups * wg_size); |
| 126 | + |
| 127 | + slmT slm_iscan_tmp(lws, cgh); |
| 128 | + |
| 129 | + cgh.parallel_for<class inclusive_scan_rec_local_scan_krn< |
| 130 | + inputT, outputT, n_wi, IndexerT, decltype(transformer)>>( |
| 131 | + sycl::nd_range<1>(gws, lws), [=](sycl::nd_item<1> it) |
| 132 | + { |
| 133 | + auto chunk_gid = it.get_global_id(0); |
| 134 | + auto lid = it.get_local_id(0); |
| 135 | + |
| 136 | + std::array<size_t, n_wi> local_isum; |
| 137 | + |
| 138 | + size_t i = chunk_gid * n_wi; |
| 139 | + for (size_t m_wi = 0; m_wi < n_wi; ++m_wi) { |
| 140 | + constexpr outputT out_zero(0); |
| 141 | + |
| 142 | + local_isum[m_wi] = |
| 143 | + (i + m_wi < n_elems) |
| 144 | + ? transformer(input[indexer(s0 + s1 * (i + m_wi))]) |
| 145 | + : out_zero; |
| 146 | + } |
| 147 | + |
| 148 | +// local_isum is now result of |
| 149 | +// inclusive scan of locally stored mask indicators |
| 150 | +#pragma unroll |
| 151 | + for (size_t m_wi = 1; m_wi < n_wi; ++m_wi) { |
| 152 | + local_isum[m_wi] += local_isum[m_wi - 1]; |
| 153 | + } |
| 154 | + |
| 155 | + size_t wg_iscan_val = |
| 156 | + sycl::inclusive_scan_over_group(it.get_group(), |
| 157 | + local_isum.back(), |
| 158 | + sycl::plus<size_t>(), |
| 159 | + size_t(0)); |
| 160 | + |
| 161 | + slm_iscan_tmp[(lid + 1) % wg_size] = wg_iscan_val; |
| 162 | + it.barrier(sycl::access::fence_space::local_space); |
| 163 | + size_t addand = (lid == 0) ? 0 : slm_iscan_tmp[lid]; |
| 164 | + it.barrier(sycl::access::fence_space::local_space); |
| 165 | + |
| 166 | +#pragma unroll |
| 167 | + for (size_t m_wi = 0; m_wi < n_wi; ++m_wi) { |
| 168 | + local_isum[m_wi] += addand; |
| 169 | + } |
| 170 | + |
| 171 | + for (size_t m_wi = 0; m_wi < n_wi && i + m_wi < n_elems; ++m_wi) { |
| 172 | + output[i + m_wi] = local_isum[m_wi]; |
| 173 | + } |
| 174 | + }); |
| 175 | + }); |
| 176 | + |
| 177 | + sycl::event out_event = inc_scan_phase1_ev; |
| 178 | + if (n_groups > 1) { |
| 179 | + outputT *temp = sycl::malloc_device<outputT>(n_groups - 1, exec_q); |
| 180 | + |
| 181 | + auto chunk_size = wg_size * n_wi; |
| 182 | + |
| 183 | + NoOpIndexer _no_op_indexer{}; |
| 184 | + NoOpTransformer<outputT> _no_op_transformer{}; |
| 185 | + auto e2 = inclusive_scan_rec<outputT, outputT, n_wi, NoOpIndexer, |
| 186 | + decltype(_no_op_transformer)>( |
| 187 | + exec_q, n_groups - 1, wg_size, output, temp, chunk_size - 1, |
| 188 | + chunk_size, _no_op_indexer, _no_op_transformer, |
| 189 | + {inc_scan_phase1_ev}); |
| 190 | + |
| 191 | + // output[ chunk_size * (i + 1) + j] += temp[i] |
| 192 | + auto e3 = exec_q.submit([&](sycl::handler &cgh) { |
| 193 | + cgh.depends_on(e2); |
| 194 | + cgh.parallel_for<class inclusive_scan_rec_chunk_update_krn< |
| 195 | + inputT, outputT, IndexerT, decltype(transformer)>>( |
| 196 | + {n_elems}, [=](auto wiid) |
| 197 | + { |
| 198 | + auto gid = wiid[0]; |
| 199 | + auto i = (gid / chunk_size); |
| 200 | + output[gid] += (i > 0) ? temp[i - 1] : 0; |
| 201 | + }); |
| 202 | + }); |
| 203 | + |
| 204 | + sycl::event e4 = exec_q.submit([&](sycl::handler &cgh) { |
| 205 | + cgh.depends_on(e3); |
| 206 | + auto ctx = exec_q.get_context(); |
| 207 | + cgh.host_task([ctx, temp]() { sycl::free(temp, ctx); }); |
| 208 | + }); |
| 209 | + |
| 210 | + out_event = e4; |
| 211 | + } |
| 212 | + |
| 213 | + return out_event; |
| 214 | +} |
| 215 | + |
| 216 | +// mask positions |
| 217 | + |
| 218 | +typedef size_t (*mask_positions_contig_impl_fn_ptr_t)( |
| 219 | + sycl::queue, |
| 220 | + size_t, |
| 221 | + const char *, |
| 222 | + char *, |
| 223 | + std::vector<sycl::event> const &); |
| 224 | + |
| 225 | +template <typename maskT, typename cumsumT> |
| 226 | +size_t mask_positions_contig_impl(sycl::queue q, |
| 227 | + size_t n_elems, |
| 228 | + const char *mask, |
| 229 | + char *cumsum, |
| 230 | + std::vector<sycl::event> const &depends = {}) |
| 231 | +{ |
| 232 | + constexpr int n_wi = 8; |
| 233 | + const maskT *mask_data_ptr = reinterpret_cast<const maskT *>(mask); |
| 234 | + cumsumT *cumsum_data_ptr = reinterpret_cast<cumsumT *>(cumsum); |
| 235 | + size_t wg_size = 128; |
| 236 | + |
| 237 | + NoOpIndexer flat_indexer{}; |
| 238 | + NonZeroIndicator<maskT, cumsumT> non_zero_indicator{}; |
| 239 | + |
| 240 | + sycl::event comp_ev = |
| 241 | + inclusive_scan_rec<maskT, cumsumT, n_wi, decltype(flat_indexer), |
| 242 | + decltype(non_zero_indicator)>( |
| 243 | + q, n_elems, wg_size, mask_data_ptr, cumsum_data_ptr, 0, 1, |
| 244 | + flat_indexer, non_zero_indicator, depends); |
| 245 | + |
| 246 | + cumsumT *last_elem = cumsum_data_ptr + (n_elems - 1); |
| 247 | + |
| 248 | + cumsumT *last_elem_host_usm = sycl::malloc_host<cumsumT>(1, q); |
| 249 | + |
| 250 | + if (last_elem_host_usm == nullptr) { |
| 251 | + throw std::bad_alloc(); |
| 252 | + } |
| 253 | + sycl::event copy_e = |
| 254 | + q.copy<cumsumT>(last_elem, last_elem_host_usm, 1, {comp_ev}); |
| 255 | + copy_e.wait(); |
| 256 | + size_t return_val = static_cast<size_t>(*last_elem_host_usm); |
| 257 | + sycl::free(last_elem_host_usm, q); |
| 258 | + |
| 259 | + return return_val; |
| 260 | +} |
| 261 | + |
| 262 | +template <typename fnT, typename T> struct MaskPositionsContigFactoryForInt32 |
| 263 | +{ |
| 264 | + fnT get() |
| 265 | + { |
| 266 | + fnT fn = mask_positions_contig_impl<T, std::int32_t>; |
| 267 | + return fn; |
| 268 | + } |
| 269 | +}; |
| 270 | + |
| 271 | +template <typename fnT, typename T> struct MaskPositionsContigFactoryForInt64 |
| 272 | +{ |
| 273 | + fnT get() |
| 274 | + { |
| 275 | + fnT fn = mask_positions_contig_impl<T, std::int64_t>; |
| 276 | + return fn; |
| 277 | + } |
| 278 | +}; |
| 279 | + |
| 280 | +typedef size_t (*mask_positions_strided_impl_fn_ptr_t)( |
| 281 | + sycl::queue, |
| 282 | + size_t, |
| 283 | + const char *, |
| 284 | + int, |
| 285 | + const py::ssize_t *, |
| 286 | + char *, |
| 287 | + std::vector<sycl::event> const &); |
| 288 | + |
| 289 | +template <typename maskT, typename cumsumT> |
| 290 | +size_t mask_positions_strided_impl(sycl::queue q, |
| 291 | + size_t n_elems, |
| 292 | + const char *mask, |
| 293 | + int nd, |
| 294 | + const py::ssize_t *shape_strides, |
| 295 | + char *cumsum, |
| 296 | + std::vector<sycl::event> const &depends = {}) |
| 297 | +{ |
| 298 | + constexpr int n_wi = 8; |
| 299 | + const maskT *mask_data_ptr = reinterpret_cast<const maskT *>(mask); |
| 300 | + cumsumT *cumsum_data_ptr = reinterpret_cast<cumsumT *>(cumsum); |
| 301 | + size_t wg_size = 128; |
| 302 | + |
| 303 | + StridedIndexer strided_indexer{nd, 0, shape_strides}; |
| 304 | + NonZeroIndicator<maskT, cumsumT> non_zero_indicator{}; |
| 305 | + |
| 306 | + sycl::event comp_ev = |
| 307 | + inclusive_scan_rec<maskT, cumsumT, n_wi, decltype(strided_indexer), |
| 308 | + decltype(non_zero_indicator)>( |
| 309 | + q, n_elems, wg_size, mask_data_ptr, cumsum_data_ptr, 0, 1, |
| 310 | + strided_indexer, non_zero_indicator, depends); |
| 311 | + |
| 312 | + cumsumT *last_elem = cumsum_data_ptr + (n_elems - 1); |
| 313 | + |
| 314 | + cumsumT *last_elem_host_usm = sycl::malloc_host<cumsumT>(1, q); |
| 315 | + |
| 316 | + if (last_elem_host_usm == nullptr) { |
| 317 | + throw std::bad_alloc(); |
| 318 | + } |
| 319 | + sycl::event copy_e = |
| 320 | + q.copy<cumsumT>(last_elem, last_elem_host_usm, 1, {comp_ev}); |
| 321 | + copy_e.wait(); |
| 322 | + size_t return_val = static_cast<size_t>(*last_elem_host_usm); |
| 323 | + sycl::free(last_elem_host_usm, q); |
| 324 | + |
| 325 | + return return_val; |
| 326 | +} |
| 327 | + |
| 328 | +template <typename fnT, typename T> struct MaskPositionsStridedFactoryForInt32 |
| 329 | +{ |
| 330 | + fnT get() |
| 331 | + { |
| 332 | + fnT fn = mask_positions_strided_impl<T, std::int32_t>; |
| 333 | + return fn; |
| 334 | + } |
| 335 | +}; |
| 336 | + |
| 337 | +template <typename fnT, typename T> struct MaskPositionsStridedFactoryForInt64 |
| 338 | +{ |
| 339 | + fnT get() |
| 340 | + { |
| 341 | + fnT fn = mask_positions_strided_impl<T, std::int64_t>; |
| 342 | + return fn; |
| 343 | + } |
| 344 | +}; |
| 345 | + |
| 346 | +} // namespace accumulators |
| 347 | +} // namespace kernels |
| 348 | +} // namespace tensor |
| 349 | +} // namespace dpctl |
0 commit comments