Skip to content

Changes test_func_order tests for some unary functions #1658

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 7 additions & 6 deletions dpctl/tests/elementwise/test_abs.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,18 +84,19 @@ def test_abs_order(dtype):
skip_if_dtype_not_supported(dtype, q)

arg_dt = np.dtype(dtype)
exp_dt = np.abs(np.ones(tuple(), dtype=arg_dt)).dtype
input_shape = (10, 10, 10, 10)
X = dpt.empty(input_shape, dtype=arg_dt, sycl_queue=q)
X[..., 0::2] = 1
X[..., 1::2] = 0

for ord in ["C", "F", "A", "K"]:
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
expected_Y = np.ones(U.shape, dtype=exp_dt)
expected_Y[..., 1::2] = 0
expected_Y = np.transpose(expected_Y, perms)
for ord in ["C", "F", "A", "K"]:
Y = dpt.abs(U, order=ord)
expected_Y = np.ones(Y.shape, dtype=Y.dtype)
expected_Y[..., 1::2] = 0
expected_Y = np.transpose(expected_Y, perms)
assert np.allclose(dpt.asnumpy(Y), expected_Y)


Expand Down
2 changes: 1 addition & 1 deletion dpctl/tests/elementwise/test_complex.py
Original file line number Diff line number Diff line change
Expand Up @@ -120,7 +120,7 @@ def test_complex_order(np_call, dpt_call, dtype):
expected_Y = np_call(dpt.asnumpy(U))
for ord in ["C", "F", "A", "K"]:
Y = dpt_call(U, order=ord)
assert np.allclose(dpt.asnumpy(Y), expected_Y)
assert_allclose(dpt.asnumpy(Y), expected_Y)


@pytest.mark.parametrize("dtype", ["c8", "c16"])
Expand Down
8 changes: 4 additions & 4 deletions dpctl/tests/elementwise/test_exp2.py
Original file line number Diff line number Diff line change
Expand Up @@ -103,11 +103,11 @@ def test_exp2_order(dtype):
X[..., 0::2] = 1 / 4
X[..., 1::2] = 1 / 2

for ord in ["C", "F", "A", "K"]:
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
expected_Y = np.exp2(dpt.asnumpy(U))
for ord in ["C", "F", "A", "K"]:
Y = dpt.exp2(U, order=ord)
expected_Y = np.exp2(dpt.asnumpy(U))
tol = 8 * max(
dpt.finfo(Y.dtype).resolution,
np.finfo(expected_Y.dtype).resolution,
Expand Down
8 changes: 4 additions & 4 deletions dpctl/tests/elementwise/test_expm1.py
Original file line number Diff line number Diff line change
Expand Up @@ -103,11 +103,11 @@ def test_expm1_order(dtype):
X[..., 0::2] = 1 / 50
X[..., 1::2] = 1 / 25

for ord in ["C", "F", "A", "K"]:
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
expected_Y = np.expm1(dpt.asnumpy(U))
for ord in ["C", "F", "A", "K"]:
Y = dpt.expm1(U, order=ord)
expected_Y = np.expm1(dpt.asnumpy(U))
tol = 8 * max(
dpt.finfo(Y.dtype).resolution,
np.finfo(expected_Y.dtype).resolution,
Expand Down
11 changes: 6 additions & 5 deletions dpctl/tests/elementwise/test_isfinite.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@

import numpy as np
import pytest
from numpy.testing import assert_allclose

import dpctl.tensor as dpt
from dpctl.tests.helper import get_queue_or_skip, skip_if_dtype_not_supported
Expand Down Expand Up @@ -90,9 +91,9 @@ def test_isfinite_order(dtype):
input_shape = (10, 10, 10, 10)
X = dpt.ones(input_shape, dtype=arg_dt, sycl_queue=q)

for ord in ["C", "F", "A", "K"]:
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[::2, ::-1, ::-1, ::5], perms)
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[::2, ::-1, ::-1, ::5], perms)
expected_Y = np.full(U.shape, fill_value=True, dtype=dpt.bool)
for ord in ["C", "F", "A", "K"]:
Y = dpt.isfinite(U, order=ord)
expected_Y = np.full(Y.shape, True, dtype=Y.dtype)
assert np.allclose(dpt.asnumpy(Y), expected_Y)
assert_allclose(dpt.asnumpy(Y), expected_Y)
11 changes: 6 additions & 5 deletions dpctl/tests/elementwise/test_isinf.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@

import numpy as np
import pytest
from numpy.testing import assert_allclose

import dpctl.tensor as dpt
from dpctl.tests.helper import get_queue_or_skip, skip_if_dtype_not_supported
Expand Down Expand Up @@ -84,9 +85,9 @@ def test_isinf_order(dtype):
input_shape = (10, 10, 10, 10)
X = dpt.ones(input_shape, dtype=arg_dt, sycl_queue=q)

for ord in ["C", "F", "A", "K"]:
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[::2, ::-1, ::-1, ::5], perms)
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[::2, ::-1, ::-1, ::5], perms)
expected_Y = np.full(U.shape, fill_value=False, dtype=dpt.bool)
for ord in ["C", "F", "A", "K"]:
Y = dpt.isinf(U, order=ord)
expected_Y = np.full(Y.shape, False, dtype=Y.dtype)
assert np.allclose(dpt.asnumpy(Y), expected_Y)
assert_allclose(dpt.asnumpy(Y), expected_Y)
8 changes: 4 additions & 4 deletions dpctl/tests/elementwise/test_isnan.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,9 +90,9 @@ def test_isnan_order(dtype):
input_shape = (10, 10, 10, 10)
X = dpt.ones(input_shape, dtype=arg_dt, sycl_queue=q)

for ord in ["C", "F", "A", "K"]:
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[::2, ::-1, ::-1, ::5], perms)
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[::2, ::-1, ::-1, ::5], perms)
expected_Y = np.full(U.shape, fill_value=False, dtype=dpt.bool)
for ord in ["C", "F", "A", "K"]:
Y = dpt.isnan(U, order=ord)
expected_Y = np.full(Y.shape, False, dtype=Y.dtype)
assert np.allclose(dpt.asnumpy(Y), expected_Y)
8 changes: 4 additions & 4 deletions dpctl/tests/elementwise/test_log.py
Original file line number Diff line number Diff line change
Expand Up @@ -103,11 +103,11 @@ def test_log_order(dtype):
X[..., 0::2] = 4 * dpt.e
X[..., 1::2] = 10 * dpt.e

for ord in ["C", "F", "A", "K"]:
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
expected_Y = np.log(dpt.asnumpy(U))
for ord in ["C", "F", "A", "K"]:
Y = dpt.log(U, order=ord)
expected_Y = np.log(dpt.asnumpy(U))
tol = 8 * max(
dpt.finfo(Y.dtype).resolution,
np.finfo(expected_Y.dtype).resolution,
Expand Down
8 changes: 4 additions & 4 deletions dpctl/tests/elementwise/test_log10.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,11 +107,11 @@ def test_log_order(dtype):
X[..., 0::2] = 4 * dpt.e
X[..., 1::2] = 10 * dpt.e

for ord in ["C", "F", "A", "K"]:
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
expected_Y = np.log10(dpt.asnumpy(U))
for ord in ["C", "F", "A", "K"]:
Y = dpt.log10(U, order=ord)
expected_Y = np.log10(dpt.asnumpy(U))
tol = 8 * max(
dpt.finfo(Y.dtype).resolution,
np.finfo(expected_Y.dtype).resolution,
Expand Down
8 changes: 4 additions & 4 deletions dpctl/tests/elementwise/test_log1p.py
Original file line number Diff line number Diff line change
Expand Up @@ -103,11 +103,11 @@ def test_log1p_order(dtype):
X[..., 0::2] = dpt.e / 1000
X[..., 1::2] = dpt.e / 100

for ord in ["C", "F", "A", "K"]:
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
expected_Y = np.log1p(dpt.asnumpy(U))
for ord in ["C", "F", "A", "K"]:
Y = dpt.log1p(U, order=ord)
expected_Y = np.log1p(dpt.asnumpy(U))
tol = 8 * max(
dpt.finfo(Y.dtype).resolution,
np.finfo(expected_Y.dtype).resolution,
Expand Down
8 changes: 4 additions & 4 deletions dpctl/tests/elementwise/test_log2.py
Original file line number Diff line number Diff line change
Expand Up @@ -103,11 +103,11 @@ def test_log_order(dtype):
X[..., 0::2] = 4 * dpt.e
X[..., 1::2] = 10 * dpt.e

for ord in ["C", "F", "A", "K"]:
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
expected_Y = np.log2(dpt.asnumpy(U))
for ord in ["C", "F", "A", "K"]:
Y = dpt.log2(U, order=ord)
expected_Y = np.log2(dpt.asnumpy(U))
tol = 8 * max(
dpt.finfo(Y.dtype).resolution,
np.finfo(expected_Y.dtype).resolution,
Expand Down
12 changes: 6 additions & 6 deletions dpctl/tests/elementwise/test_negative.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,11 +76,11 @@ def test_negative_order(dtype):
X[..., 0::2] = 1
X[..., 1::2] = 0

for ord in ["C", "F", "A", "K"]:
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
expected_Y = np.negative(np.ones(U.shape, dtype=U.dtype))
expected_Y[..., 1::2] = 0
expected_Y = np.transpose(expected_Y, perms)
for ord in ["C", "F", "A", "K"]:
Y = dpt.negative(U, order=ord)
expected_Y = np.negative(np.ones(Y.shape, dtype=Y.dtype))
expected_Y[..., 1::2] = 0
expected_Y = np.transpose(expected_Y, perms)
assert np.allclose(dpt.asnumpy(Y), expected_Y)
12 changes: 6 additions & 6 deletions dpctl/tests/elementwise/test_positive.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,11 +69,11 @@ def test_positive_order(dtype):
X[..., 0::2] = 1
X[..., 1::2] = 0

for ord in ["C", "F", "A", "K"]:
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
expected_Y = np.ones(U.shape, dtype=U.dtype)
expected_Y[..., 1::2] = 0
expected_Y = np.transpose(expected_Y, perms)
for ord in ["C", "F", "A", "K"]:
Y = dpt.positive(U, order=ord)
expected_Y = np.ones(Y.shape, dtype=Y.dtype)
expected_Y[..., 1::2] = 0
expected_Y = np.transpose(expected_Y, perms)
assert np.allclose(dpt.asnumpy(Y), expected_Y)
13 changes: 7 additions & 6 deletions dpctl/tests/elementwise/test_sign.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,18 +64,19 @@ def test_sign_order(dtype):
skip_if_dtype_not_supported(dtype, q)

arg_dt = np.dtype(dtype)
expected_dt = np.sign(np.ones(tuple(), dtype=arg_dt)).dtype
input_shape = (10, 10, 10, 10)
X = dpt.empty(input_shape, dtype=arg_dt, sycl_queue=q)
X[..., 0::2] = 1
X[..., 1::2] = 0

for ord in ["C", "F", "A", "K"]:
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
expected_Y = np.ones(U.shape, dtype=expected_dt)
expected_Y[..., 1::2] = 0
expected_Y = np.transpose(expected_Y, perms)
for ord in ["C", "F", "A", "K"]:
Y = dpt.sign(U, order=ord)
expected_Y = np.ones(Y.shape, dtype=Y.dtype)
expected_Y[..., 1::2] = 0
expected_Y = np.transpose(expected_Y, perms)
assert np.allclose(dpt.asnumpy(Y), expected_Y)


Expand Down
8 changes: 4 additions & 4 deletions dpctl/tests/elementwise/test_sqrt.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,11 +110,11 @@ def test_sqrt_order(dtype):
X[..., 0::2] = 16.0
X[..., 1::2] = 23.0

for ord in ["C", "F", "A", "K"]:
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
expected_Y = np.sqrt(dpt.asnumpy(U))
for ord in ["C", "F", "A", "K"]:
Y = dpt.sqrt(U, order=ord)
expected_Y = np.sqrt(dpt.asnumpy(U))
tol = 8 * max(
dpt.finfo(Y.dtype).resolution,
np.finfo(expected_Y.dtype).resolution,
Expand Down
12 changes: 6 additions & 6 deletions dpctl/tests/elementwise/test_square.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,13 +69,13 @@ def test_square_order(dtype):
X[..., 0::2] = 2
X[..., 1::2] = 0

for ord in ["C", "F", "A", "K"]:
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
for perms in itertools.permutations(range(4)):
U = dpt.permute_dims(X[:, ::-1, ::-1, :], perms)
expected_Y = np.full(U.shape, 4, dtype=U.dtype)
expected_Y[..., 1::2] = 0
expected_Y = np.transpose(expected_Y, perms)
for ord in ["C", "F", "A", "K"]:
Y = dpt.square(U, order=ord)
expected_Y = np.full(Y.shape, 4, dtype=Y.dtype)
expected_Y[..., 1::2] = 0
expected_Y = np.transpose(expected_Y, perms)
assert np.allclose(dpt.asnumpy(Y), expected_Y)


Expand Down