@@ -144,6 +144,11 @@ def nanargmax(a, axis=None, out=None, *, keepdims=False):
144
144
the user is recommended to filter NaNs themselves and use `dpnp.argmax`
145
145
on the filtered array.
146
146
147
+ Warning
148
+ -------
149
+ The results cannot be trusted if a slice contains only NaNs
150
+ and -Infs.
151
+
147
152
Parameters
148
153
----------
149
154
a : {dpnp.ndarray, usm_ndarray}
@@ -173,8 +178,6 @@ def nanargmax(a, axis=None, out=None, *, keepdims=False):
173
178
values ignoring NaNs. The returned array must have the default array
174
179
index data type.
175
180
For all-NaN slices ``ValueError`` is raised.
176
- Warning: the results cannot be trusted if a slice contains only NaNs
177
- and -Infs.
178
181
179
182
Limitations
180
183
-----------
@@ -225,6 +228,11 @@ def nanargmin(a, axis=None, out=None, *, keepdims=False):
225
228
the user is recommended to filter NaNs themselves and use `dpnp.argmax`
226
229
on the filtered array.
227
230
231
+ Warning
232
+ -------
233
+ The results cannot be trusted if a slice contains only NaNs
234
+ and -Infs.
235
+
228
236
Parameters
229
237
----------
230
238
a : {dpnp.ndarray, usm_ndarray}
@@ -254,8 +262,6 @@ def nanargmin(a, axis=None, out=None, *, keepdims=False):
254
262
values ignoring NaNs. The returned array must have the default array
255
263
index data type.
256
264
For all-NaN slices ``ValueError`` is raised.
257
- Warning: the results cannot be trusted if a slice contains only NaNs
258
- and Infs.
259
265
260
266
Limitations
261
267
-----------
0 commit comments