|
1 | 1 | import numpy
|
2 | 2 | import pytest
|
| 3 | +from dpctl.tensor._numpy_helper import AxisError |
3 | 4 | from numpy.testing import (
|
4 | 5 | assert_allclose,
|
| 6 | + assert_equal, |
| 7 | + assert_raises, |
5 | 8 | )
|
6 | 9 |
|
7 | 10 | import dpnp
|
8 | 11 |
|
9 | 12 | from .helper import (
|
10 | 13 | get_all_dtypes,
|
| 14 | + get_float_dtypes, |
11 | 15 | )
|
12 | 16 |
|
13 | 17 |
|
14 |
| -@pytest.mark.parametrize("dtype", get_all_dtypes(no_none=True)) |
15 |
| -@pytest.mark.parametrize("size", [2, 4, 8, 16, 3, 9, 27, 81]) |
16 |
| -def test_count_nonzero(dtype, size): |
17 |
| - if dtype != dpnp.bool: |
18 |
| - a = numpy.arange(size, dtype=dtype) |
19 |
| - else: |
20 |
| - a = numpy.resize(numpy.arange(2, dtype=dtype), size) |
| 18 | +class TestCountNonZero: |
| 19 | + @pytest.mark.parametrize("dtype", get_all_dtypes(no_none=True)) |
| 20 | + @pytest.mark.parametrize("size", [2, 4, 8, 16, 3, 9, 27, 81]) |
| 21 | + def test_basic(self, dtype, size): |
| 22 | + if dtype != dpnp.bool: |
| 23 | + a = numpy.arange(size, dtype=dtype) |
| 24 | + else: |
| 25 | + a = numpy.resize(numpy.arange(2, dtype=dtype), size) |
21 | 26 |
|
22 |
| - for i in range(int(size / 2)): |
23 |
| - a[(i * (int(size / 3) - 1)) % size] = 0 |
| 27 | + for i in range(int(size / 2)): |
| 28 | + a[(i * (int(size / 3) - 1)) % size] = 0 |
24 | 29 |
|
25 |
| - ia = dpnp.array(a) |
| 30 | + ia = dpnp.array(a) |
26 | 31 |
|
27 |
| - np_res = numpy.count_nonzero(a) |
28 |
| - dpnp_res = dpnp.count_nonzero(ia) |
| 32 | + result = dpnp.count_nonzero(ia) |
| 33 | + expected = numpy.count_nonzero(a) |
| 34 | + assert_allclose(result, expected) |
29 | 35 |
|
30 |
| - assert_allclose(dpnp_res, np_res) |
| 36 | + @pytest.mark.parametrize("data", [[], [0], [1]]) |
| 37 | + def test_trivial(self, data): |
| 38 | + a = numpy.array(data) |
| 39 | + ia = dpnp.array(a) |
| 40 | + |
| 41 | + result = dpnp.count_nonzero(ia) |
| 42 | + expected = numpy.count_nonzero(a) |
| 43 | + assert_allclose(result, expected) |
| 44 | + |
| 45 | + @pytest.mark.parametrize("data", [[], [0], [1]]) |
| 46 | + def test_trivial_boolean_dtype(self, data): |
| 47 | + a = numpy.array(data, dtype="?") |
| 48 | + ia = dpnp.array(a) |
| 49 | + |
| 50 | + result = dpnp.count_nonzero(ia) |
| 51 | + expected = numpy.count_nonzero(a) |
| 52 | + assert_allclose(result, expected) |
| 53 | + |
| 54 | + @pytest.mark.parametrize("axis", [0, 1]) |
| 55 | + def test_axis_basic(self, axis): |
| 56 | + a = numpy.array([[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]]) |
| 57 | + ia = dpnp.array(a) |
| 58 | + |
| 59 | + result = dpnp.count_nonzero(ia, axis=axis) |
| 60 | + expected = numpy.count_nonzero(a, axis=axis) |
| 61 | + assert_equal(result, expected) |
| 62 | + |
| 63 | + @pytest.mark.parametrize("xp", [numpy, dpnp]) |
| 64 | + def test_axis_raises(self, xp): |
| 65 | + a = xp.array([[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]]) |
| 66 | + |
| 67 | + assert_raises(ValueError, xp.count_nonzero, a, axis=(1, 1)) |
| 68 | + assert_raises(TypeError, xp.count_nonzero, a, axis="foo") |
| 69 | + assert_raises(AxisError, xp.count_nonzero, a, axis=3) |
| 70 | + |
| 71 | + # different exception type in numpy and dpnp |
| 72 | + with pytest.raises((ValueError, TypeError)): |
| 73 | + xp.count_nonzero(a, axis=xp.array([[1], [2]])) |
| 74 | + |
| 75 | + @pytest.mark.parametrize("dt", get_all_dtypes(no_none=True)) |
| 76 | + @pytest.mark.parametrize("axis", [0, 1, (0, 1), None]) |
| 77 | + def test_axis_all_dtypes(self, dt, axis): |
| 78 | + a = numpy.zeros((3, 3), dtype=dt) |
| 79 | + a[0, 0] = a[1, 0] = 1 |
| 80 | + ia = dpnp.array(a) |
| 81 | + |
| 82 | + result = dpnp.count_nonzero(ia, axis=axis) |
| 83 | + expected = numpy.count_nonzero(a, axis=axis) |
| 84 | + assert_equal(result, expected) |
| 85 | + |
| 86 | + def test_axis_empty(self): |
| 87 | + axis = () |
| 88 | + a = numpy.array([[0, 0, 1], [1, 0, 1]]) |
| 89 | + ia = dpnp.array(a) |
| 90 | + |
| 91 | + result = dpnp.count_nonzero(ia, axis=axis) |
| 92 | + expected = numpy.count_nonzero(a, axis=axis) |
| 93 | + assert_equal(result, expected) |
| 94 | + |
| 95 | + @pytest.mark.parametrize("axis", [None, 0, 1]) |
| 96 | + def test_keepdims(self, axis): |
| 97 | + a = numpy.array([[0, 0, 1, 0], [0, 3, 5, 0], [7, 9, 2, 0]]) |
| 98 | + ia = dpnp.array(a) |
| 99 | + |
| 100 | + result = dpnp.count_nonzero(ia, axis=axis, keepdims=True) |
| 101 | + expected = numpy.count_nonzero(a, axis=axis, keepdims=True) |
| 102 | + assert_equal(result, expected) |
| 103 | + |
| 104 | + @pytest.mark.parametrize("dt", get_all_dtypes(no_none=True)) |
| 105 | + def test_out(self, dt): |
| 106 | + a = numpy.array([[0, 1, 0], [2, 0, 3]], dtype=dt) |
| 107 | + ia = dpnp.array(a) |
| 108 | + iout = dpnp.empty_like(ia, shape=ia.shape[1], dtype=dpnp.intp) |
| 109 | + |
| 110 | + result = dpnp.count_nonzero(ia, axis=0, out=iout) |
| 111 | + expected = numpy.count_nonzero(a, axis=0) # no out keyword |
| 112 | + assert_equal(result, expected) |
| 113 | + assert result is iout |
| 114 | + |
| 115 | + @pytest.mark.parametrize("dt", get_float_dtypes()) |
| 116 | + def test_out_floating_dtype(self, dt): |
| 117 | + a = dpnp.array([[0, 1, 0], [2, 0, 3]]) |
| 118 | + out = dpnp.empty_like(a, shape=a.shape[1], dtype=dt) |
| 119 | + assert_raises(ValueError, dpnp.count_nonzero, a, axis=0, out=out) |
| 120 | + |
| 121 | + def test_array_method(self): |
| 122 | + a = numpy.array([[1, 0, 0], [4, 0, 6]]) |
| 123 | + ia = dpnp.array(a) |
| 124 | + assert_equal(ia.nonzero(), a.nonzero()) |
0 commit comments