@@ -155,15 +155,15 @@ def _get_accumulation_res_dt(a, dtype):
155
155
-----
156
156
:obj:`dpnp.acos` is a multivalued function: for each `x` there are infinitely
157
157
many numbers `z` such that :math:`cos(z) = x`. The convention is to return the
158
- angle `z` whose real part lies in :math:`[0, \pi]`.
158
+ angle `z` whose the real part lies in the interval :math:`[0, \pi]`.
159
159
160
160
For real-valued floating-point input data types, :obj:`dpnp.acos` always
161
161
returns real output. For each value that cannot be expressed as a real number
162
162
or infinity, it yields ``NaN``.
163
163
164
164
For complex floating-point input data types, :obj:`dpnp.acos` is a complex
165
165
analytic function that has, by convention, the branch cuts
166
- :math:`[ -\infty, -1]` and :math:`[1, \infty] ` and is continuous from above on
166
+ :math:`( -\infty, -1]` and :math:`[1, \infty) ` and is continuous from above on
167
167
the former and from below on the latter.
168
168
169
169
The inverse cosine is also known as :math:`arccos` or :math:`cos^{-1}`.
@@ -190,17 +190,19 @@ def _get_accumulation_res_dt(a, dtype):
190
190
191
191
192
192
_ACOSH_DOCSTRING = r"""
193
- Computes inverse hyperbolic cosine for each element `x_i` for input array `x`.
193
+ Computes inverse hyperbolic cosine for each element :math:`x_i` for input array
194
+ `x`.
194
195
195
- The inverse of :obj:`dpnp.cosh` so that, if ``y = cosh(x)``, then ``x = arccosh(y)``.
196
- Note that :obj:`dpnp.acosh` is an alias of :obj:`dpnp.arccosh`.
196
+ The inverse of :obj:`dpnp.cosh` so that, if :math:`y = cosh(x)`, then
197
+ :math:`x = acosh(y)`. Note that :obj:`dpnp.arccosh` is an alias of
198
+ :obj:`dpnp.acosh`.
197
199
198
- For full documentation refer to :obj:`numpy.arccosh `.
200
+ For full documentation refer to :obj:`numpy.acosh `.
199
201
200
202
Parameters
201
203
----------
202
204
x : {dpnp.ndarray, usm_ndarray}
203
- Input array, expected to have numeric data type.
205
+ Input array, expected to have a floating-point data type.
204
206
out : {None, dpnp.ndarray, usm_ndarray}, optional
205
207
Output array to populate.
206
208
Array must have the correct shape and the expected data type.
@@ -214,9 +216,9 @@ def _get_accumulation_res_dt(a, dtype):
214
216
Returns
215
217
-------
216
218
out : dpnp.ndarray
217
- An array containing the element-wise inverse hyperbolic cosine, in
218
- radians and in the half-closed interval `[0, \infty)`. The data type
219
- of the returned array is determined by the Type Promotion Rules.
219
+ An array containing the element-wise inverse hyperbolic cosine, in radians
220
+ and in the half-closed interval :math: `[0, \infty)`. The data type of the
221
+ returned array is determined by the Type Promotion Rules.
220
222
221
223
Limitations
222
224
-----------
@@ -235,38 +237,41 @@ def _get_accumulation_res_dt(a, dtype):
235
237
236
238
Notes
237
239
-----
238
- :obj:`dpnp.arccosh` is a multivalued function: for each `x` there are infinitely
239
- many numbers `z` such that ``cosh(z) = x``. The convention is to return the
240
- angle `z` whose real part lies in `[0, \infty]`.
240
+ :obj:`dpnp.acosh` is a multivalued function: for each `x` there are infinitely
241
+ many numbers `z` such that :math:`cosh(z) = x`. The convention is to return the
242
+ angle `z` whose the real part lies in the interval :math:`[0, \infty)` and the
243
+ imaginary part in the interval :math:`[-\pi, \pi]`.
241
244
242
- For real-valued input data types, :obj:`dpnp.arccosh ` always returns real output.
243
- For each value that cannot be expressed as a real number or infinity, it yields
244
- ``NaN``.
245
+ For real-valued floating-point input data types, :obj:`dpnp.acosh ` always
246
+ returns real output. For each value that cannot be expressed as a real number
247
+ or infinity, it yields ``NaN``.
245
248
246
- For complex-valued input, :obj:`dpnp.arccosh` is a complex analytic function that
247
- has, by convention, the branch cuts `[-\infty, 1]` and is continuous from above.
249
+ For complex floating-point input data types, :obj:`dpnp.acosh` is a complex
250
+ analytic function that has, by convention, the branch cuts :math:`(-\infty, 1]`
251
+ and is continuous from above on it.
248
252
249
- The inverse hyperbolic cos is also known as :math:`acosh` or :math:`cosh^{-1}`.
253
+ The inverse hyperbolic cosine is also known as :math:`arccosh` or
254
+ :math:`cosh^{-1}`.
250
255
251
256
Examples
252
257
--------
253
258
>>> import dpnp as np
254
259
>>> x = np.array([1.0, np.e, 10.0])
255
- >>> np.arccosh (x)
260
+ >>> np.acosh (x)
256
261
array([0.0, 1.65745445, 2.99322285])
257
262
258
263
"""
259
264
260
- arccosh = DPNPUnaryFunc (
261
- "arccosh " ,
265
+ acosh = DPNPUnaryFunc (
266
+ "acosh " ,
262
267
ti ._acosh_result_type ,
263
268
ti ._acosh ,
264
269
_ACOSH_DOCSTRING ,
265
270
mkl_fn_to_call = "_mkl_acosh_to_call" ,
266
271
mkl_impl_fn = "_acosh" ,
267
272
)
268
273
269
- acosh = arccosh # acosh is an alias for arccosh
274
+ arccosh = acosh # arccosh is an alias for acosh
270
275
271
276
272
277
_ASIN_DOCSTRING = r"""
0 commit comments