@@ -125,8 +125,6 @@ def test_input_nan(self):
125
125
expected = numpy .clip (np_a , - 1 , 1 )
126
126
assert_array_equal (result , expected )
127
127
128
- # TODO: unmute the test once dpctl resolves the issue
129
- @pytest .mark .skip (reason = "dpctl-1489 issue" )
130
128
@pytest .mark .parametrize (
131
129
"kwargs" ,
132
130
[
@@ -138,7 +136,7 @@ def test_input_nan(self):
138
136
],
139
137
)
140
138
def test_nan_edges (self , kwargs ):
141
- np_a = numpy .arange (7 )
139
+ np_a = numpy .arange (7.0 )
142
140
dp_a = dpnp .asarray (np_a )
143
141
144
142
result = dp_a .clip (** kwargs )
@@ -564,16 +562,6 @@ def test_op_with_scalar(array, val, func, data_type, val_type):
564
562
pytest .skip (
565
563
"(0j ** 0) is different: (NaN + NaNj) in dpnp and (1 + 0j) in numpy"
566
564
)
567
- # TODO: Remove when #1378 (dpctl) is solved
568
- elif (
569
- is_cpu_device ()
570
- and dpnp_a .dtype == dpnp .complex128
571
- and dpnp_a .size >= 8
572
- and not dpnp .all (dpnp_a )
573
- ):
574
- pytest .skip (
575
- "[..., 0j ** val] is different for x.size >= 8: [..., NaN + NaNj] in dpnp and [..., 0 + 0j] in numpy"
576
- )
577
565
578
566
if func == "subtract" and val_type == bool and data_type == dpnp .bool :
579
567
with pytest .raises (TypeError ):
@@ -1002,19 +990,6 @@ def test_power(array, val, data_type, val_type):
1002
990
dpnp_a = dpnp .array (array , dtype = data_type )
1003
991
val_ = val_type (val )
1004
992
1005
- # TODO: Remove when #1378 (dpctl) is solved
1006
- if (
1007
- is_cpu_device ()
1008
- and (
1009
- dpnp .complex128 in (data_type , val_type )
1010
- or dpnp .complex64 in (data_type , val_type )
1011
- )
1012
- and dpnp_a .size >= 8
1013
- ):
1014
- pytest .skip (
1015
- "[..., 0j ** val] is different for x.size >= 8: [..., NaN + NaNj] in dpnp and [..., 0 + 0j] in numpy"
1016
- )
1017
-
1018
993
result = dpnp .power (dpnp_a , val_ )
1019
994
expected = numpy .power (np_a , val_ )
1020
995
assert_allclose (expected , result , rtol = 1e-6 )
@@ -2306,12 +2281,6 @@ def test_complex_values(self):
2306
2281
dp_arr = dpnp .array (np_arr )
2307
2282
func = lambda x : x ** 2
2308
2283
2309
- # TODO: unmute the test once it's available
2310
- if is_win_platform ():
2311
- pytest .skip (
2312
- "Until the latest dpctl is available on internal channel"
2313
- )
2314
-
2315
2284
assert_dtype_allclose (func (dp_arr ), func (np_arr ))
2316
2285
2317
2286
@pytest .mark .parametrize ("val" , [0 , 1 ], ids = ["0" , "1" ])
@@ -2696,9 +2665,6 @@ def test_matmul_dtype_matrix_inputs(self, dtype1, dtype2, shape_pair):
2696
2665
with pytest .raises (TypeError ):
2697
2666
dpnp .matmul (b1 , b2 , dtype = dtype2 )
2698
2667
2699
- # TODO: Temporary skipping the test, until Internal CI is updated with
2700
- # recent changed in dpctl regarding dpt.result_type function
2701
- @pytest .mark .skip ("Temporary skipping the test" )
2702
2668
@pytest .mark .parametrize ("dtype1" , get_all_dtypes (no_bool = True ))
2703
2669
@pytest .mark .parametrize ("dtype2" , get_all_dtypes (no_bool = True ))
2704
2670
@pytest .mark .parametrize (
@@ -2846,9 +2812,6 @@ def test_exe_q(self):
2846
2812
with pytest .raises (ValueError ):
2847
2813
dpnp .matmul (x1 , x2 )
2848
2814
2849
- # TODO: Temporary skipping the test, until Internal CI is updated with
2850
- # recent changed in dpctl regarding dpt.result_type function
2851
- @pytest .mark .skip ("Temporary skipping the test" )
2852
2815
def test_matmul_casting (self ):
2853
2816
a1 = dpnp .arange (2 * 4 , dtype = dpnp .float32 ).reshape (2 , 4 )
2854
2817
a2 = dpnp .arange (4 * 3 ).reshape (4 , 3 )
0 commit comments