@@ -36,6 +36,7 @@ def test_dot_arange(self, dtype):
36
36
37
37
@pytest .mark .parametrize ("dtype" , get_all_dtypes ())
38
38
def test_dot_scalar (self , dtype ):
39
+ numpy .random .seed (42 )
39
40
a = 2
40
41
b = numpy .array (numpy .random .uniform (- 5 , 5 , 10 ), dtype = dtype )
41
42
ib = dpnp .array (b )
@@ -72,6 +73,7 @@ def test_dot_scalar(self, dtype):
72
73
)
73
74
def test_dot (self , dtype , array_info ):
74
75
size1 , size2 , shape1 , shape2 = array_info
76
+ numpy .random .seed (42 )
75
77
a = numpy .array (
76
78
numpy .random .uniform (- 5 , 5 , size1 ), dtype = dtype
77
79
).reshape (shape1 )
@@ -113,6 +115,7 @@ def test_dot(self, dtype, array_info):
113
115
)
114
116
def test_dot_complex (self , dtype , array_info ):
115
117
size1 , size2 , shape1 , shape2 = array_info
118
+ numpy .random .seed (42 )
116
119
x11 = numpy .random .uniform (- 5 , 5 , size1 )
117
120
x12 = numpy .random .uniform (- 5 , 5 , size1 )
118
121
x21 = numpy .random .uniform (- 5 , 5 , size2 )
@@ -154,6 +157,7 @@ def test_dot_complex(self, dtype, array_info):
154
157
)
155
158
def test_dot_ndarray (self , dtype , array_info ):
156
159
size1 , size2 , shape1 , shape2 = array_info
160
+ numpy .random .seed (42 )
157
161
a = numpy .array (
158
162
numpy .random .uniform (- 5 , 5 , size1 ), dtype = dtype
159
163
).reshape (shape1 )
@@ -194,6 +198,7 @@ def test_dot_strided(self, dtype):
194
198
def test_dot_out_scalar (self , dtype ):
195
199
size = 10
196
200
a = 2
201
+ numpy .random .seed (42 )
197
202
b = numpy .array (numpy .random .uniform (- 5 , 5 , size ), dtype = dtype )
198
203
ia = 2
199
204
ib = dpnp .array (b )
@@ -233,6 +238,7 @@ def test_dot_out_scalar(self, dtype):
233
238
)
234
239
def test_dot_out (self , dtype , array_info ):
235
240
size1 , size2 , shape1 , shape2 , out_shape = array_info
241
+ numpy .random .seed (42 )
236
242
a = numpy .array (
237
243
numpy .random .uniform (- 5 , 5 , size1 ), dtype = dtype
238
244
).reshape (shape1 )
@@ -252,6 +258,7 @@ def test_dot_out(self, dtype, array_info):
252
258
@pytest .mark .parametrize ("dtype1" , get_all_dtypes ())
253
259
@pytest .mark .parametrize ("dtype2" , get_all_dtypes ())
254
260
def test_dot_input_dtype_matrix (self , dtype1 , dtype2 ):
261
+ numpy .random .seed (42 )
255
262
a = numpy .array (numpy .random .uniform (- 5 , 5 , 10 ), dtype = dtype1 )
256
263
b = numpy .array (numpy .random .uniform (- 5 , 5 , 10 ), dtype = dtype2 )
257
264
ia = dpnp .array (a )
@@ -358,6 +365,7 @@ class TestTensordot:
358
365
@pytest .mark .parametrize ("dtype" , get_all_dtypes ())
359
366
def test_tensordot_scalar (self , dtype ):
360
367
a = 2
368
+ numpy .random .seed (42 )
361
369
b = numpy .array (numpy .random .uniform (- 5 , 5 , 10 ), dtype = dtype )
362
370
ib = dpnp .array (b )
363
371
@@ -372,6 +380,7 @@ def test_tensordot_scalar(self, dtype):
372
380
@pytest .mark .parametrize ("dtype" , get_all_dtypes (no_complex = True ))
373
381
@pytest .mark .parametrize ("axes" , [- 3 , - 2 , - 1 , 0 , 1 , 2 ])
374
382
def test_tensordot (self , dtype , axes ):
383
+ numpy .random .seed (42 )
375
384
a = numpy .array (numpy .random .uniform (- 10 , 10 , 64 ), dtype = dtype ).reshape (
376
385
4 , 4 , 4
377
386
)
@@ -383,12 +392,12 @@ def test_tensordot(self, dtype, axes):
383
392
384
393
result = dpnp .tensordot (ia , ib , axes = axes )
385
394
expected = numpy .tensordot (a , b , axes = axes )
386
- # TODO: investigate the effect of factor, see SAT-6700
387
- assert_dtype_allclose (result , expected , factor = 24 )
395
+ assert_dtype_allclose (result , expected )
388
396
389
397
@pytest .mark .parametrize ("dtype" , get_complex_dtypes ())
390
398
@pytest .mark .parametrize ("axes" , [- 3 , - 2 , - 1 , 0 , 1 , 2 ])
391
399
def test_tensordot_complex (self , dtype , axes ):
400
+ numpy .random .seed (42 )
392
401
x11 = numpy .random .uniform (- 10 , 10 , 64 )
393
402
x12 = numpy .random .uniform (- 10 , 10 , 64 )
394
403
x21 = numpy .random .uniform (- 10 , 10 , 64 )
@@ -400,8 +409,7 @@ def test_tensordot_complex(self, dtype, axes):
400
409
401
410
result = dpnp .tensordot (ia , ib , axes = axes )
402
411
expected = numpy .tensordot (a , b , axes = axes )
403
- # TODO: investigate the effect of factor, see SAT-6700
404
- assert_dtype_allclose (result , expected , factor = 24 )
412
+ assert_dtype_allclose (result , expected )
405
413
406
414
@pytest .mark .parametrize ("dtype" , get_all_dtypes (no_bool = True ))
407
415
@pytest .mark .parametrize (
@@ -415,6 +423,7 @@ def test_tensordot_complex(self, dtype, axes):
415
423
],
416
424
)
417
425
def test_tensordot_axes (self , dtype , axes ):
426
+ numpy .random .seed (42 )
418
427
a = numpy .array (
419
428
numpy .random .uniform (- 10 , 10 , 120 ), dtype = dtype
420
429
).reshape (2 , 5 , 3 , 4 )
@@ -426,12 +435,12 @@ def test_tensordot_axes(self, dtype, axes):
426
435
427
436
result = dpnp .tensordot (ia , ib , axes = axes )
428
437
expected = numpy .tensordot (a , b , axes = axes )
429
- # TODO: investigate the effect of factor, see SAT-6700
430
- assert_dtype_allclose (result , expected , factor = 24 )
438
+ assert_dtype_allclose (result , expected )
431
439
432
440
@pytest .mark .parametrize ("dtype1" , get_all_dtypes ())
433
441
@pytest .mark .parametrize ("dtype2" , get_all_dtypes ())
434
442
def test_tensordot_input_dtype_matrix (self , dtype1 , dtype2 ):
443
+ numpy .random .seed (42 )
435
444
a = numpy .array (
436
445
numpy .random .uniform (- 10 , 10 , 60 ), dtype = dtype1
437
446
).reshape (3 , 4 , 5 )
@@ -443,10 +452,10 @@ def test_tensordot_input_dtype_matrix(self, dtype1, dtype2):
443
452
444
453
result = dpnp .tensordot (ia , ib )
445
454
expected = numpy .tensordot (a , b )
446
- # TODO: investigate the effect of factor, see SAT-6700
447
- assert_dtype_allclose (result , expected , factor = 24 )
455
+ assert_dtype_allclose (result , expected )
448
456
449
457
def test_tensordot_strided (self ):
458
+ numpy .random .seed (42 )
450
459
for dim in [1 , 2 , 3 , 4 ]:
451
460
axes = 1 if dim == 1 else 2
452
461
A = numpy .random .rand (* ([10 ] * dim ))
@@ -538,6 +547,7 @@ def test_vdot_scalar(self, dtype):
538
547
)
539
548
def test_vdot (self , dtype , array_info ):
540
549
size1 , size2 , shape1 , shape2 = array_info
550
+ numpy .random .seed (42 )
541
551
a = numpy .array (
542
552
numpy .random .uniform (- 5 , 5 , size1 ), dtype = dtype
543
553
).reshape (shape1 )
@@ -575,6 +585,7 @@ def test_vdot(self, dtype, array_info):
575
585
)
576
586
def test_vdot_complex (self , dtype , array_info ):
577
587
size1 , size2 , shape1 , shape2 = array_info
588
+ numpy .random .seed (42 )
578
589
x11 = numpy .random .uniform (- 5 , 5 , size1 )
579
590
x12 = numpy .random .uniform (- 5 , 5 , size1 )
580
591
x21 = numpy .random .uniform (- 5 , 5 , size2 )
@@ -614,6 +625,7 @@ def test_vdot_strided(self, dtype):
614
625
@pytest .mark .parametrize ("dtype1" , get_all_dtypes ())
615
626
@pytest .mark .parametrize ("dtype2" , get_all_dtypes ())
616
627
def test_vdot_input_dtype_matrix (self , dtype1 , dtype2 ):
628
+ numpy .random .seed (42 )
617
629
a = numpy .array (numpy .random .uniform (- 5 , 5 , 10 ), dtype = dtype1 )
618
630
b = numpy .array (numpy .random .uniform (- 5 , 5 , 10 ), dtype = dtype2 )
619
631
ia = dpnp .array (a )
0 commit comments