@@ -2432,7 +2432,7 @@ def gradient(f, *varargs, axis=None, edge_order=1):
2432
2432
_LDEXP_DOCSTRING = """
2433
2433
Returns x1 * 2**x2, element-wise.
2434
2434
2435
- The mantissas `x1` and twos exponents `x2` are used to construct floating point
2435
+ The mantissas `x1` and exponents of two `x2` are used to construct floating point
2436
2436
numbers ``x1 * 2**x2``.
2437
2437
2438
2438
For full documentation refer to :obj:`numpy.ldexp`.
@@ -2443,7 +2443,7 @@ def gradient(f, *varargs, axis=None, edge_order=1):
2443
2443
Array of multipliers.
2444
2444
Both inputs `x1` and `x2` can not be scalars at the same time.
2445
2445
x2 : {dpnp.ndarray, usm_ndarray, scalar}
2446
- Array of twos exponents.
2446
+ Array of exponents of two .
2447
2447
Both inputs `x1` and `x2` can not be scalars at the same time.
2448
2448
out : {None, dpnp.ndarray, usm_ndarray}, optional
2449
2449
Output array to populate. Array must have the correct shape and
@@ -2466,11 +2466,11 @@ def gradient(f, *varargs, axis=None, edge_order=1):
2466
2466
2467
2467
See Also
2468
2468
--------
2469
- :obj:`dpnp.frexp` : Return (y1, y2) from ``x = y1 * 2**y2``, inverse to ` ldexp`.
2469
+ :obj:`dpnp.frexp` : Return (y1, y2) from ``x = y1 * 2**y2``, inverse to :obj:`dpnp. ldexp`.
2470
2470
2471
2471
Notes
2472
2472
-----
2473
- Complex dtypes are not supported, they will raise a TypeError.
2473
+ Complex dtypes are not supported, they will raise a `` TypeError`` .
2474
2474
2475
2475
:obj:`dpnp.ldexp` is useful as the inverse of :obj:`dpnp.frexp`, if used by
2476
2476
itself it is more clear to simply use the expression ``x1 * 2**x2``.
0 commit comments