Skip to content

Commit cbb3acf

Browse files
Apply suggestions from code review
Co-authored-by: Anton <[email protected]>
1 parent a692ff5 commit cbb3acf

File tree

1 file changed

+12
-11
lines changed

1 file changed

+12
-11
lines changed

dpnp/dpnp_iface_histograms.py

Lines changed: 12 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -763,12 +763,13 @@ def histogram2d(x, y, bins=10, range=None, density=None, weights=None):
763763
Parameters
764764
----------
765765
x : {dpnp.ndarray, usm_ndarray} of shape (N,)
766-
An array containing the x coordinates of the points to be
766+
An array containing the `x` coordinates of the points to be
767767
histogrammed.
768768
y : {dpnp.ndarray, usm_ndarray} of shape (N,)
769-
An array containing the y coordinates of the points to be
769+
An array containing the `y` coordinates of the points to be
770770
histogrammed.
771-
bins : {int, list of dpnp.ndarray or usm_ndarray, sequence of scalars}, optional
771+
bins : {int, list of dpnp.ndarray or usm_ndarray, sequence of scalars}, \
772+
optional
772773
Histogram bins.
773774
774775
The bins specification:
@@ -788,19 +789,19 @@ def histogram2d(x, y, bins=10, range=None, density=None, weights=None):
788789
(if not specified explicitly in the `bins` parameters):
789790
``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range
790791
will be considered outliers and not tallied in the histogram.
791-
density : bool, optional
792+
density : {None, bool}, optional
792793
If ``False``, the default, returns the number of samples in each bin.
793794
If ``True``, returns the probability *density* function at the bin,
794795
``bin_count / sample_count / bin_area``.
795-
weights : {dpnp.ndarray, usm_ndarray} of shape(N,), optional
796+
weights : {dpnp.ndarray, usm_ndarray} of shape (N,), optional
796797
An array of values ``w_i`` weighing each sample ``(x_i, y_i)``.
797-
Weights are normalized to 1 if `density` is True. If `density` is
798-
False, the values of the returned histogram are equal to the sum of
798+
Weights are normalized to ``1`` if `density` is ``True``. If `density` is
799+
``False``, the values of the returned histogram are equal to the sum of
799800
the weights belonging to the samples falling into each bin.
800801
801802
Returns
802803
-------
803-
H : ndarray, shape(nx, ny)
804+
H : dpnp.ndarray of shape (nx, ny)
804805
The bi-dimensional histogram of samples `x` and `y`. Values in `x`
805806
are histogrammed along the first dimension and values in `y` are
806807
histogrammed along the second dimension.
@@ -816,15 +817,15 @@ def histogram2d(x, y, bins=10, range=None, density=None, weights=None):
816817
817818
Notes
818819
-----
819-
When `density` is True, then the returned histogram is the sample
820+
When `density` is ``True``, then the returned histogram is the sample
820821
density, defined such that the sum over bins of the product
821822
``bin_value * bin_area`` is 1.
822823
823824
Please note that the histogram does not follow the Cartesian convention
824825
where `x` values are on the abscissa and `y` values on the ordinate
825-
axis. Rather, `x` is histogrammed along the first dimension of the
826+
axis. Rather, `x` is histogrammed along the first dimension of the
826827
array (vertical), and `y` along the second dimension of the array
827-
(horizontal). This ensures compatibility with `histogramdd`.
828+
(horizontal). This ensures compatibility with `histogramdd`.
828829
829830
Examples
830831
--------

0 commit comments

Comments
 (0)