@@ -2148,7 +2148,7 @@ def geomspace(
2148
2148
Returns
2149
2149
-------
2150
2150
out : dpnp.ndarray
2151
- num samples, equally spaced on a log scale.
2151
+ ` num` samples, equally spaced on a log scale.
2152
2152
2153
2153
See Also
2154
2154
--------
@@ -2340,8 +2340,8 @@ def linspace(
2340
2340
The end value of the sequence, in any form that can be converted to
2341
2341
an array. This includes scalars, lists, lists of tuples, tuples, tuples
2342
2342
of tuples, tuples of lists, and ndarrays. If `endpoint` is set to
2343
- ``False`` the sequence consists of all but the last of num + 1 evenly
2344
- spaced samples, so that `stop` is excluded.
2343
+ ``False`` the sequence consists of all but the last of `` num + 1``
2344
+ evenly spaced samples, so that `stop` is excluded.
2345
2345
dtype : dtype, optional
2346
2346
The desired dtype for the array. If not given, a default dtype will be
2347
2347
used that can represent the values (by considering Promotion Type Rule
@@ -2372,7 +2372,7 @@ def linspace(
2372
2372
Returns
2373
2373
-------
2374
2374
out : dpnp.ndarray
2375
- There are num equally spaced samples in the closed interval
2375
+ There are ` num` equally spaced samples in the closed interval
2376
2376
[`start`, `stop`] or the half-open interval [`start`, `stop`)
2377
2377
(depending on whether `endpoint` is ``True`` or ``False``).
2378
2378
step : float, optional
@@ -2381,12 +2381,12 @@ def linspace(
2381
2381
2382
2382
See Also
2383
2383
--------
2384
- :obj:`dpnp.arange` : Similar to ` linspace`, but uses a step size (instead
2385
- of the number of samples).
2386
- :obj:`dpnp.geomspace` : Similar to ` linspace`, but with numbers spaced
2387
- evenly on a log scale (a geometric progression).
2388
- :obj:`dpnp.logspace` : Similar to ` geomspace`, but with the end points
2389
- specified as logarithms.
2384
+ :obj:`dpnp.arange` : Similar to :obj:`dpnp. linspace`, but uses a step size
2385
+ (instead of the number of samples).
2386
+ :obj:`dpnp.geomspace` : Similar to :obj:`dpnp. linspace`, but with numbers
2387
+ spaced evenly on a log scale (a geometric progression).
2388
+ :obj:`dpnp.logspace` : Similar to :obj:`dpnp. geomspace`, but with the end
2389
+ points specified as logarithms.
2390
2390
2391
2391
Examples
2392
2392
--------
@@ -2559,7 +2559,7 @@ def logspace(
2559
2559
Input data, in any form that can be converted to an array. This
2560
2560
includes scalars, lists, lists of tuples, tuples, tuples of tuples,
2561
2561
tuples of lists, and ndarrays. `base` ** `stop` is the final value of
2562
- the sequence, unless `endpoint` is ``False``. In that case, num + 1
2562
+ the sequence, unless `endpoint` is ``False``. In that case, `` num + 1``
2563
2563
values are spaced over the interval in log-space, of which all but
2564
2564
the last (a sequence of length num) are returned.
2565
2565
num : int, optional
@@ -2585,7 +2585,7 @@ def logspace(
2585
2585
tuples of lists, and ndarrays. The base of the log space, in any form
2586
2586
that can be converted to an array.This includes scalars, lists, lists
2587
2587
of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays.
2588
- The `step` size between the elements in ln(samples) / ln(base)
2588
+ The `step` size between the elements in `` ln(samples) / ln(base)``
2589
2589
(or log_base(samples)) is uniform. Default is 10.0.
2590
2590
dtype : dtype, optional
2591
2591
The desired dtype for the array. If not given, a default dtype will be
@@ -2599,18 +2599,17 @@ def logspace(
2599
2599
Returns
2600
2600
-------
2601
2601
out: dpnp.ndarray
2602
- num samples, equally spaced on a log scale.
2602
+ ` num` samples, equally spaced on a log scale.
2603
2603
2604
2604
See Also
2605
2605
--------
2606
- :obj:`dpnp.arange` : Similar to linspace, with the step size specified
2607
- instead of the number of samples. Note that, when used
2608
- with a float endpoint, the endpoint may or may not be
2609
- included.
2610
- :obj:`dpnp.linspace` : Similar to logspace, but with the samples uniformly
2611
- distributed in linear space, instead of log space.
2612
- :obj:`dpnp.geomspace` : Similar to logspace, but with endpoints specified
2613
- directly.
2606
+ :obj:`dpnp.arange` : Similar to :obj:`dpnp.linspace`, with the step size
2607
+ specified instead of the number of samples. Note that, when used with
2608
+ a float endpoint, the endpoint may or may not be included.
2609
+ :obj:`dpnp.linspace` : Similar to :obj:`dpnp.logspace`, but with the
2610
+ samples uniformly distributed in linear space, instead of log space.
2611
+ :obj:`dpnp.geomspace` : Similar to :obj:`dpnp.logspace`, but with endpoints
2612
+ specified directly.
2614
2613
2615
2614
Examples
2616
2615
--------
@@ -2665,7 +2664,7 @@ def meshgrid(*xi, copy=True, sparse=False, indexing="xy"):
2665
2664
2666
2665
Make N-D coordinate arrays for vectorized evaluations of
2667
2666
N-D scalar/vector fields over N-D grids, given
2668
- one-dimensional coordinate arrays x1, x2,..., xn.
2667
+ one-dimensional coordinate arrays `` x1, x2,..., xn`` .
2669
2668
2670
2669
For full documentation refer to :obj:`numpy.meshgrid`.
2671
2670
@@ -2674,7 +2673,7 @@ def meshgrid(*xi, copy=True, sparse=False, indexing="xy"):
2674
2673
x1, x2,..., xn : {dpnp.ndarray, usm_ndarray}
2675
2674
1-D arrays representing the coordinates of a grid.
2676
2675
indexing : {'xy', 'ij'}, optional
2677
- Cartesian ('xy', default) or matrix ('ij') indexing of output.
2676
+ Cartesian (`` 'xy'`` , default) or matrix (`` 'ij'`` ) indexing of output.
2678
2677
sparse : bool, optional
2679
2678
If True the shape of the returned coordinate array for dimension `i`
2680
2679
is reduced from ``(N1, ..., Ni, ... Nn)`` to
@@ -2686,11 +2685,11 @@ def meshgrid(*xi, copy=True, sparse=False, indexing="xy"):
2686
2685
Returns
2687
2686
-------
2688
2687
X1, X2,..., XN : tuple of dpnp.ndarrays
2689
- For vectors `x1`, `x2`,..., `xn` with lengths ``Ni=len(xi)``,
2690
- returns ``(N1, N2, N3,..., Nn)`` shaped arrays if indexing='ij'
2691
- or ``(N2, N1, N3,..., Nn)`` shaped arrays if indexing='xy'
2692
- with the elements of `xi` repeated to fill the matrix along
2693
- the first dimension for `x1`, the second for `x2` and so on.
2688
+ For vectors `x1`, `x2`,..., `xn` with lengths ``Ni=len(xi)``, returns
2689
+ ``(N1, N2, N3,..., Nn)`` shaped arrays if `` indexing='ij'`` or
2690
+ ``(N2, N1, N3,..., Nn)`` shaped arrays if `` indexing='xy'`` with
2691
+ the elements of `xi` repeated to fill the matrix along the first
2692
+ dimension for `x1`, the second for `x2` and so on.
2694
2693
2695
2694
Examples
2696
2695
--------
@@ -2850,7 +2849,7 @@ class OGridClass:
2850
2849
out : one dpnp.ndarray or tuple of dpnp.ndarray
2851
2850
Returns a tuple of arrays,
2852
2851
with grid[i].shape = (1, ..., 1, dimensions[i], 1, ..., 1)
2853
- with dimensions[i] in the ith place.
2852
+ with dimensions[i] in the i-th place.
2854
2853
2855
2854
Examples
2856
2855
--------
0 commit comments