@@ -109,16 +109,16 @@ def nanargmax(a, axis=None, out=None, *, keepdims=False):
109
109
Parameters
110
110
----------
111
111
a : {dpnp_array, usm_ndarray}
112
- input array.
112
+ Input array.
113
113
axis : int, optional
114
- axis along which to search. If ``None``, the function must return
114
+ Axis along which to search. If ``None``, the function must return
115
115
the index of the maximum value of the flattened array.
116
116
Default: ``None``.
117
117
out : {dpnp_array, usm_ndarray}, optional
118
- if provided, the result will be inserted into this array. It should
118
+ If provided, the result will be inserted into this array. It should
119
119
be of the appropriate shape and dtype.
120
120
keepdims : bool
121
- if ``True``, the reduced axes (dimensions) must be included in the
121
+ If ``True``, the reduced axes (dimensions) must be included in the
122
122
result as singleton dimensions, and, accordingly, the result must be
123
123
compatible with the input array. Otherwise, if ``False``, the reduced
124
124
axes (dimensions) must not be included in the result.
@@ -127,16 +127,16 @@ def nanargmax(a, axis=None, out=None, *, keepdims=False):
127
127
Returns
128
128
-------
129
129
out : dpnp.ndarray
130
- if axis is ``None``, a zero-dimensional array containing the index of
131
- the first occurrence of the maximum value; otherwise, a non-zero-dimensional
132
- array containing the indices of the minimum values. The returned array
130
+ If ` axis` is ``None``, a zero-dimensional array containing the index of
131
+ the first occurrence of the maximum value ignoring NaNs ; otherwise, a non-zero-dimensional
132
+ array containing the indices of the minimum values ignoring NaNs . The returned array
133
133
must have the default array index data type.
134
134
For all-NaN slices ``ValueError`` is raised.
135
135
Warning: the results cannot be trusted if a slice contains only NaNs and -Infs.
136
136
137
137
Limitations
138
138
-----------
139
- Input and output arrays are only supported as either :class:`dpnp.ndarray`
139
+ Input array is only supported as either :class:`dpnp.ndarray`
140
140
or :class:`dpctl.tensor.usm_ndarray`.
141
141
Input array data types are limited by supported DPNP :ref:`Data types`.
142
142
@@ -177,16 +177,16 @@ def nanargmin(a, axis=None, out=None, *, keepdims=False):
177
177
Parameters
178
178
----------
179
179
a : {dpnp_array, usm_ndarray}
180
- input array.
180
+ Input array.
181
181
axis : int, optional
182
- axis along which to search. If ``None``, the function must return
182
+ Axis along which to search. If ``None``, the function must return
183
183
the index of the minimum value of the flattened array.
184
184
Default: ``None``.
185
185
out : {dpnp_array, usm_ndarray}, optional
186
- if provided, the result will be inserted into this array. It should
186
+ If provided, the result will be inserted into this array. It should
187
187
be of the appropriate shape and dtype.
188
188
keepdims : bool
189
- if ``True``, the reduced axes (dimensions) must be included in the
189
+ If ``True``, the reduced axes (dimensions) must be included in the
190
190
result as singleton dimensions, and, accordingly, the result must be
191
191
compatible with the input array. Otherwise, if ``False``, the reduced
192
192
axes (dimensions) must not be included in the result.
@@ -195,9 +195,9 @@ def nanargmin(a, axis=None, out=None, *, keepdims=False):
195
195
Returns
196
196
-------
197
197
out : dpnp.ndarray
198
- if axis is ``None``, a zero-dimensional array containing the index of
199
- the first occurrence of the minimum value; otherwise, a non-zero-dimensional
200
- array containing the indices of the minimum values. The returned array
198
+ If ` axis` is ``None``, a zero-dimensional array containing the index of
199
+ the first occurrence of the minimum value ignoring NaNs ; otherwise, a non-zero-dimensional
200
+ array containing the indices of the minimum values ignoring NaNs . The returned array
201
201
must have the default array index data type.
202
202
For all-NaN slices ``ValueError`` is raised.
203
203
Warning: the results cannot be trusted if a slice contains only NaNs and Infs.
@@ -319,17 +319,17 @@ def nanmax(a, axis=None, out=None, keepdims=False, initial=None, where=True):
319
319
Parameters
320
320
----------
321
321
a : {dpnp_array, usm_ndarray}
322
- input array.
322
+ Input array.
323
323
axis : int or tuple of ints, optional
324
- axis or axes along which maximum values must be computed. By default,
324
+ Axis or axes along which maximum values must be computed. By default,
325
325
the maximum value must be computed over the entire array. If a tuple of integers,
326
326
maximum values must be computed over multiple axes.
327
327
Default: ``None``.
328
328
out : {dpnp_array, usm_ndarray}, optional
329
- if provided, the result will be inserted into this array. It should
329
+ If provided, the result will be inserted into this array. It should
330
330
be of the appropriate shape and dtype.
331
331
keepdims : bool
332
- if ``True``, the reduced axes (dimensions) must be included in the
332
+ If ``True``, the reduced axes (dimensions) must be included in the
333
333
result as singleton dimensions, and, accordingly, the result must be
334
334
compatible with the input array. Otherwise, if ``False``, the reduced
335
335
axes (dimensions) must not be included in the result.
@@ -338,7 +338,7 @@ def nanmax(a, axis=None, out=None, keepdims=False, initial=None, where=True):
338
338
Returns
339
339
-------
340
340
out : dpnp.ndarray
341
- if the maximum value was computed over the entire array, a zero-dimensional array
341
+ If the maximum value was computed over the entire array, a zero-dimensional array
342
342
containing the maximum value ignoring NaNs; otherwise, a non-zero-dimensional array
343
343
containing the maximum values ignoring NaNs. The returned array must have
344
344
the same data type as `a`.
@@ -347,7 +347,7 @@ def nanmax(a, axis=None, out=None, keepdims=False, initial=None, where=True):
347
347
348
348
Limitations
349
349
-----------
350
- Input and output arrays are only supported as either :class:`dpnp.ndarray`
350
+ Input array is only supported as either :class:`dpnp.ndarray`
351
351
or :class:`dpctl.tensor.usm_ndarray`.
352
352
Parameters `where`, and `initial` are only supported with their default values.
353
353
Otherwise ``NotImplementedError`` exception will be raised.
@@ -414,17 +414,17 @@ def nanmin(a, axis=None, out=None, keepdims=False, initial=None, where=True):
414
414
Parameters
415
415
----------
416
416
a : {dpnp_array, usm_ndarray}
417
- input array.
417
+ Input array.
418
418
axis : int or tuple of ints, optional
419
- axis or axes along which minimum values must be computed. By default,
419
+ Axis or axes along which minimum values must be computed. By default,
420
420
the minimum value must be computed over the entire array. If a tuple of integers,
421
421
minimum values must be computed over multiple axes.
422
422
Default: ``None``.
423
423
out : {dpnp_array, usm_ndarray}, optional
424
- if provided, the result will be inserted into this array. It should
424
+ If provided, the result will be inserted into this array. It should
425
425
be of the appropriate shape and dtype.
426
426
keepdims : bool, optional
427
- if ``True``, the reduced axes (dimensions) must be included in the
427
+ If ``True``, the reduced axes (dimensions) must be included in the
428
428
result as singleton dimensions, and, accordingly, the result must be
429
429
compatible with the input array. Otherwise, if ``False``, the reduced
430
430
axes (dimensions) must not be included in the result.
@@ -433,7 +433,7 @@ def nanmin(a, axis=None, out=None, keepdims=False, initial=None, where=True):
433
433
Returns
434
434
-------
435
435
out : dpnp.ndarray
436
- if the minimum value was computed over the entire array, a zero-dimensional array
436
+ If the minimum value was computed over the entire array, a zero-dimensional array
437
437
containing the minimum value ignoring NaNs; otherwise, a non-zero-dimensional array
438
438
containing the minimum values ignoring NaNs. The returned array must have
439
439
the same data type as `a`.
@@ -442,7 +442,7 @@ def nanmin(a, axis=None, out=None, keepdims=False, initial=None, where=True):
442
442
443
443
Limitations
444
444
-----------
445
- Input and output arrays are only supported as either :class:`dpnp.ndarray`
445
+ Input array is only supported as either :class:`dpnp.ndarray`
446
446
or :class:`dpctl.tensor.usm_ndarray`.
447
447
Parameters `where`, and `initial` are only supported with their default values.
448
448
Otherwise ``NotImplementedError`` exception will be raised.
0 commit comments