@@ -79,7 +79,7 @@ def _as_pairs(x, ndim, as_index=False):
79
79
x = numpy .asarray (numpy .round (x ), dtype = numpy .intp )
80
80
81
81
if x .ndim < 3 :
82
- # Optimization: Possibly use faster paths for cases where `x` has
82
+ # Optimization: Using faster paths for cases where `x` has
83
83
# only 1 or 2 elements. `numpy.broadcast_to` could handle these as well
84
84
# but is currently slower
85
85
@@ -116,7 +116,7 @@ def _get_edges(padded, axis, width_pair):
116
116
117
117
Parameters
118
118
----------
119
- padded : ndarray
119
+ padded : dpnp. ndarray
120
120
Empty-padded array.
121
121
axis : int
122
122
Dimension in which the edges are considered.
@@ -126,7 +126,7 @@ def _get_edges(padded, axis, width_pair):
126
126
127
127
Returns
128
128
-------
129
- left_edge, right_edge : ndarray
129
+ left_edge, right_edge : dpnp. ndarray
130
130
Edge values of the valid area in `padded` in the given dimension. Its
131
131
shape will always match `padded` except for the dimension given by
132
132
`axis` which will have a length of 1.
@@ -151,7 +151,7 @@ def _get_linear_ramps(padded, axis, width_pair, end_value_pair):
151
151
152
152
Parameters
153
153
----------
154
- padded : ndarray
154
+ padded : dpnp. ndarray
155
155
Empty-padded array.
156
156
axis : int
157
157
Dimension in which the ramps are constructed.
@@ -164,7 +164,7 @@ def _get_linear_ramps(padded, axis, width_pair, end_value_pair):
164
164
165
165
Returns
166
166
-------
167
- left_ramp, right_ramp : ndarray
167
+ left_ramp, right_ramp : dpnp. ndarray
168
168
Linear ramps to set on both sides of `padded`.
169
169
170
170
"""
@@ -203,7 +203,7 @@ def _get_stats(padded, axis, width_pair, length_pair, stat_func):
203
203
204
204
Parameters
205
205
----------
206
- padded : ndarray
206
+ padded : dpnp. ndarray
207
207
Empty-padded array.
208
208
axis : int
209
209
Dimension in which the statistic is calculated.
0 commit comments