@@ -135,7 +135,7 @@ def _get_accumulation_res_dt(a, dtype):
135
135
-------
136
136
out : dpnp.ndarray
137
137
An array containing the element-wise inverse cosine, in radians and in the
138
- closed interval :math:`[0, pi]`. The data type of the returned array is
138
+ closed interval :math:`[0, \ pi]`. The data type of the returned array is
139
139
determined by the Type Promotion Rules.
140
140
141
141
Limitations
@@ -155,7 +155,7 @@ def _get_accumulation_res_dt(a, dtype):
155
155
-----
156
156
:obj:`dpnp.acos` is a multivalued function: for each `x` there are infinitely
157
157
many numbers `z` such that :math:`cos(z) = x`. The convention is to return the
158
- angle `z` whose real part lies in :math:`[0, pi]`.
158
+ angle `z` whose real part lies in :math:`[0, \ pi]`.
159
159
160
160
For real-valued floating-point input data types, :obj:`dpnp.acos` always
161
161
returns real output. For each value that cannot be expressed as a real number
@@ -295,7 +295,7 @@ def _get_accumulation_res_dt(a, dtype):
295
295
-------
296
296
out : dpnp.ndarray
297
297
An array containing the element-wise inverse sine, in radians
298
- and in the closed interval `[-pi/2, pi/2]`. The data type
298
+ and in the closed interval `[-\ pi/2, \ pi/2]`. The data type
299
299
of the returned array is determined by the Type Promotion Rules.
300
300
301
301
Limitations
@@ -318,7 +318,7 @@ def _get_accumulation_res_dt(a, dtype):
318
318
-----
319
319
:obj:`dpnp.arcsin` is a multivalued function: for each `x` there are infinitely
320
320
many numbers `z` such that ``sin(z) = x``. The convention is to return the
321
- angle `z` whose real part lies in `[-pi/2, pi/2]`.
321
+ angle `z` whose real part lies in `[-\ pi/2, \ pi/2]`.
322
322
323
323
For real-valued input data types, :obj:`dpnp.arcsin` always returns real output.
324
324
For each value that cannot be expressed as a real number or infinity, it yields
@@ -397,7 +397,7 @@ def _get_accumulation_res_dt(a, dtype):
397
397
-----
398
398
:obj:`dpnp.arcsinh` is a multivalued function: for each `x` there are infinitely
399
399
many numbers `z` such that ``sin(z) = x``. The convention is to return the
400
- angle `z` whose real part lies in `[-pi/2, pi/2]`.
400
+ angle `z` whose real part lies in `[-\ pi/2, \ pi/2]`.
401
401
402
402
For real-valued input data types, :obj:`dpnp.arcsinh` always returns real output.
403
403
For each value that cannot be expressed as a real number or infinity, it yields
@@ -457,7 +457,7 @@ def _get_accumulation_res_dt(a, dtype):
457
457
-------
458
458
out : dpnp.ndarray
459
459
An array containing the element-wise inverse tangent, in radians
460
- and in the closed interval `[-pi/2, pi/2]`. The data type
460
+ and in the closed interval `[-\ pi/2, \ pi/2]`. The data type
461
461
of the returned array is determined by the Type Promotion Rules.
462
462
463
463
Limitations
@@ -479,7 +479,7 @@ def _get_accumulation_res_dt(a, dtype):
479
479
-----
480
480
:obj:`dpnp.arctan` is a multivalued function: for each `x` there are infinitely
481
481
many numbers `z` such that ``tan(z) = x``. The convention is to return the
482
- angle `z` whose real part lies in `[-pi/2, pi/2]`.
482
+ angle `z` whose real part lies in `[-\ pi/2, \ pi/2]`.
483
483
484
484
For real-valued input data types, :obj:`dpnp.arctan` always returns real output.
485
485
For each value that cannot be expressed as a real number or infinity, it yields
@@ -645,7 +645,7 @@ def _get_accumulation_res_dt(a, dtype):
645
645
-----
646
646
:obj:`dpnp.arctanh` is a multivalued function: for each `x` there are infinitely
647
647
many numbers `z` such that ``tanh(z) = x``. The convention is to return the
648
- angle `z` whose real part lies in `[-pi/2, pi/2]`.
648
+ angle `z` whose real part lies in `[-\ pi/2, \ pi/2]`.
649
649
650
650
For real-valued input data types, :obj:`dpnp.arctanh` always returns real output.
651
651
For each value that cannot be expressed as a real number or infinity, it yields
0 commit comments