Skip to content

Temporary skip test for result_type #1658

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jan 15, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
207 changes: 105 additions & 102 deletions tests/third_party/cupy/test_type_routines.py
Original file line number Diff line number Diff line change
@@ -1,102 +1,105 @@
import unittest

import numpy
import pytest

import dpnp as cupy
from tests.third_party.cupy import testing


def _generate_type_routines_input(xp, dtype, obj_type):
dtype = numpy.dtype(dtype)
if obj_type == "dtype":
return dtype
if obj_type == "specifier":
return str(dtype)
if obj_type == "scalar":
return dtype.type(3)
if obj_type == "array":
return xp.zeros(3, dtype=dtype)
if obj_type == "primitive":
return type(dtype.type(3).tolist())
assert False


@testing.parameterize(
*testing.product(
{
"obj_type": ["dtype", "specifier", "scalar", "array", "primitive"],
}
)
)
class TestCanCast(unittest.TestCase):
@testing.for_all_dtypes_combination(names=("from_dtype", "to_dtype"))
@testing.numpy_cupy_equal()
def test_can_cast(self, xp, from_dtype, to_dtype):
if self.obj_type == "scalar":
pytest.skip("to be aligned with NEP-50")

from_obj = _generate_type_routines_input(xp, from_dtype, self.obj_type)

ret = xp.can_cast(from_obj, to_dtype)
assert isinstance(ret, bool)
return ret


@pytest.mark.skip("dpnp.common_type() is not implemented yet")
class TestCommonType(unittest.TestCase):
@testing.numpy_cupy_equal()
def test_common_type_empty(self, xp):
ret = xp.common_type()
assert type(ret) == type
return ret

@testing.for_all_dtypes(no_bool=True)
@testing.numpy_cupy_equal()
def test_common_type_single_argument(self, xp, dtype):
array = _generate_type_routines_input(xp, dtype, "array")
ret = xp.common_type(array)
assert type(ret) == type
return ret

@testing.for_all_dtypes_combination(
names=("dtype1", "dtype2"), no_bool=True
)
@testing.numpy_cupy_equal()
def test_common_type_two_arguments(self, xp, dtype1, dtype2):
array1 = _generate_type_routines_input(xp, dtype1, "array")
array2 = _generate_type_routines_input(xp, dtype2, "array")
ret = xp.common_type(array1, array2)
assert type(ret) == type
return ret

@testing.for_all_dtypes()
def test_common_type_bool(self, dtype):
for xp in (numpy, cupy):
array1 = _generate_type_routines_input(xp, dtype, "array")
array2 = _generate_type_routines_input(xp, "bool_", "array")
with pytest.raises(TypeError):
xp.common_type(array1, array2)


@testing.parameterize(
*testing.product(
{
"obj_type1": ["dtype", "specifier", "scalar", "array", "primitive"],
"obj_type2": ["dtype", "specifier", "scalar", "array", "primitive"],
}
)
)
class TestResultType(unittest.TestCase):
@testing.for_all_dtypes_combination(names=("dtype1", "dtype2"))
@testing.numpy_cupy_equal()
def test_result_type(self, xp, dtype1, dtype2):
if "scalar" in {self.obj_type1, self.obj_type2}:
pytest.skip("to be aligned with NEP-50")

input1 = _generate_type_routines_input(xp, dtype1, self.obj_type1)

input2 = _generate_type_routines_input(xp, dtype2, self.obj_type2)
ret = xp.result_type(input1, input2)
assert isinstance(ret, numpy.dtype)
return ret
import unittest

import numpy
import pytest

import dpnp as cupy
from tests.third_party.cupy import testing


def _generate_type_routines_input(xp, dtype, obj_type):
dtype = numpy.dtype(dtype)
if obj_type == "dtype":
return dtype
if obj_type == "specifier":
return str(dtype)
if obj_type == "scalar":
return dtype.type(3)
if obj_type == "array":
return xp.zeros(3, dtype=dtype)
if obj_type == "primitive":
return type(dtype.type(3).tolist())
assert False


@testing.parameterize(
*testing.product(
{
"obj_type": ["dtype", "specifier", "scalar", "array", "primitive"],
}
)
)
class TestCanCast(unittest.TestCase):
@testing.for_all_dtypes_combination(names=("from_dtype", "to_dtype"))
@testing.numpy_cupy_equal()
def test_can_cast(self, xp, from_dtype, to_dtype):
if self.obj_type == "scalar":
pytest.skip("to be aligned with NEP-50")

from_obj = _generate_type_routines_input(xp, from_dtype, self.obj_type)

ret = xp.can_cast(from_obj, to_dtype)
assert isinstance(ret, bool)
return ret


@pytest.mark.skip("dpnp.common_type() is not implemented yet")
class TestCommonType(unittest.TestCase):
@testing.numpy_cupy_equal()
def test_common_type_empty(self, xp):
ret = xp.common_type()
assert type(ret) == type
return ret

@testing.for_all_dtypes(no_bool=True)
@testing.numpy_cupy_equal()
def test_common_type_single_argument(self, xp, dtype):
array = _generate_type_routines_input(xp, dtype, "array")
ret = xp.common_type(array)
assert type(ret) == type
return ret

@testing.for_all_dtypes_combination(
names=("dtype1", "dtype2"), no_bool=True
)
@testing.numpy_cupy_equal()
def test_common_type_two_arguments(self, xp, dtype1, dtype2):
array1 = _generate_type_routines_input(xp, dtype1, "array")
array2 = _generate_type_routines_input(xp, dtype2, "array")
ret = xp.common_type(array1, array2)
assert type(ret) == type
return ret

@testing.for_all_dtypes()
def test_common_type_bool(self, dtype):
for xp in (numpy, cupy):
array1 = _generate_type_routines_input(xp, dtype, "array")
array2 = _generate_type_routines_input(xp, "bool_", "array")
with pytest.raises(TypeError):
xp.common_type(array1, array2)


@testing.parameterize(
*testing.product(
{
"obj_type1": ["dtype", "specifier", "scalar", "array", "primitive"],
"obj_type2": ["dtype", "specifier", "scalar", "array", "primitive"],
}
)
)
# TODO: Temporary skipping the test, until Internal CI is updated with
# recent changed in dpctl regarding dpt.result_type function
@pytest.mark.skip("Temporary skipping the test")
class TestResultType(unittest.TestCase):
@testing.for_all_dtypes_combination(names=("dtype1", "dtype2"))
@testing.numpy_cupy_equal()
def test_result_type(self, xp, dtype1, dtype2):
if "scalar" in {self.obj_type1, self.obj_type2}:
pytest.skip("to be aligned with NEP-50")

input1 = _generate_type_routines_input(xp, dtype1, self.obj_type1)

input2 = _generate_type_routines_input(xp, dtype2, self.obj_type2)
ret = xp.result_type(input1, input2)
assert isinstance(ret, numpy.dtype)
return ret