@@ -247,7 +247,7 @@ LowRankFun(f::LowRankFun) = LowRankFun(f,ChebyshevInterval(),ChebyshevInterval()
247
247
248
248
# # Utilities
249
249
250
- function findapproxmax! (f:: Function ,X:: AbstractMatrix ,ptsx:: AbstractVector ,ptsy:: Vector ,gridx,gridy)
250
+ function findapproxmax! (f:: Function ,X:: AbstractMatrix ,ptsx:: AbstractVector ,ptsy:: AbstractVector ,gridx,gridy)
251
251
for j= 1 : gridy
252
252
ptsyj = ptsy[j]
253
253
@simd for k= 1 : gridx
@@ -259,23 +259,23 @@ function findapproxmax!(f::Function,X::AbstractMatrix,ptsx::AbstractVector,ptsy:
259
259
maxabsf,[ptsx[imptple[1 ]],ptsy[imptple[2 ]]]
260
260
end
261
261
262
- function findapproxmax! (A:: Fun ,B:: Fun ,X:: AbstractMatrix ,ptsx:: Vector ,ptsy:: Vector ,gridx,gridy)
262
+ function findapproxmax! (A:: Fun ,B:: Fun ,X:: AbstractMatrix ,ptsx:: AbstractVector ,ptsy:: AbstractVector ,gridx,gridy)
263
263
Ax,By = A .(ptsx),B .(ptsy)
264
264
subtractrankone! (Ax,By,X,gridx,gridy)
265
265
maxabsf,impt = findmaxabs (X)
266
266
imptple = CartesianIndices ((gridx,gridy))[impt]
267
267
[ptsx[imptple[1 ]],ptsy[imptple[2 ]]]
268
268
end
269
269
270
- function findcholeskyapproxmax! (f:: Function ,X:: AbstractVector ,pts:: Vector ,grid)
270
+ function findcholeskyapproxmax! (f:: Function ,X:: AbstractVector ,pts:: AbstractVector ,grid)
271
271
@simd for k= 1 : grid
272
272
@inbounds X[k]+= f (pts[k],pts[k])
273
273
end
274
274
maxabsf,impt = findmaxabs (X)
275
275
maxabsf,pts[impt]
276
276
end
277
277
278
- function findcholeskyapproxmax! (A:: Fun ,B:: Fun ,X:: Vector ,pts:: Vector ,grid)
278
+ function findcholeskyapproxmax! (A:: Fun ,B:: Fun ,X:: AbstractVector ,pts:: AbstractVector ,grid)
279
279
Ax,By = A .(pts),B .(pts)
280
280
subtractrankone! (Ax,By,X,grid)
281
281
maxabsf,impt = findmaxabs (X)
0 commit comments