@@ -253,8 +253,8 @@ using ApproxFunOrthogonalPolynomials: forwardrecurrence
253
253
end
254
254
255
255
@testset " Normalized space" begin
256
- for f in Any[ x -> 3 x^ 3 + 5 x^ 2 + 2 , x-> x, identity]
257
- for dt in Any[( ), (0 .. 1 ,)]
256
+ for f in ( x -> 3 x^ 3 + 5 x^ 2 + 2 , x-> x, identity)
257
+ for dt in (( ), (0 .. 1 ,))
258
258
S = Chebyshev (dt... )
259
259
NS = NormalizedPolynomialSpace (S)
260
260
@@ -273,8 +273,16 @@ using ApproxFunOrthogonalPolynomials: forwardrecurrence
273
273
s1 = NormalizedChebyshev (- 1 .. 1 )
274
274
s2 = NormalizedChebyshev ()
275
275
@test s1 == s2
276
- D1 = Derivative (s1)
277
- D2 = Derivative (s2)
276
+ D1 = if VERSION >= v " 1.8"
277
+ @inferred Derivative (s1)
278
+ else
279
+ Derivative (s1)
280
+ end
281
+ D2 = if VERSION >= v " 1.8"
282
+ @inferred Derivative (s2)
283
+ else
284
+ Derivative (s2)
285
+ end
278
286
f = x -> 3 x^ 2 + 5 x
279
287
f1 = Fun (f, s1)
280
288
f2 = Fun (f, s2)
@@ -296,7 +304,7 @@ using ApproxFunOrthogonalPolynomials: forwardrecurrence
296
304
end
297
305
298
306
@testset " Operator exponentiation" begin
299
- for M in Any[ Multiplication (Fun (), Chebyshev ()), Multiplication (Fun ())]
307
+ for M in ( Multiplication (Fun (), Chebyshev ()), Multiplication (Fun ()))
300
308
N = @inferred (M -> M^ 0 )(M)
301
309
@test N * Fun () == Fun ()
302
310
N = @inferred (M -> M^ 1 )(M)
0 commit comments