@@ -13,19 +13,16 @@ struct Jacobi{D<:Domain,R,T} <: PolynomialSpace{D,R}
13
13
end
14
14
Jacobi (b:: T ,a:: T ,d:: Domain ) where {T<: Number } =
15
15
Jacobi {typeof(d),promote_type(T,real(prectype(d)))} (b, a, d)
16
- Legendre (domain) = Jacobi (0 ,0 ,domain)
17
- Legendre () = Legendre (ChebyshevInterval ())
18
- Jacobi (b:: Number ,a:: Number ,d:: Domain ) = Jacobi (promote (dynamic (b), dynamic (a))... ,d)
19
- Jacobi (b:: Number ,a:: Number ,d) = Jacobi (b,a,Domain (d))
20
- Jacobi (b:: Number ,a:: Number ) = Jacobi (b,a,ChebyshevInterval ())
16
+ Legendre (domain = ChebyshevInterval ()) = Jacobi (0 ,0 ,Domain (domain):: Domain )
17
+ Jacobi (b:: Number ,a:: Number ,d= ChebyshevInterval ()) = Jacobi (promote (b, a)... , Domain (d):: Domain )
21
18
Jacobi (A:: Ultraspherical ) = Jacobi (order (A)- 0.5 ,order (A)- 0.5 ,domain (A))
22
19
Jacobi (A:: Chebyshev ) = Jacobi (- 0.5 ,- 0.5 ,domain (A))
23
20
24
21
const NormalizedJacobi{D<: Domain ,R,T} = NormalizedPolynomialSpace{Jacobi{D,R,T},D,R}
25
22
NormalizedJacobi (s... ) = NormalizedPolynomialSpace (Jacobi (s... ))
26
23
NormalizedLegendre (d... ) = NormalizedPolynomialSpace (Legendre (d... ))
27
24
28
- normalization (:: Type{T} , sp:: Jacobi , k:: Int ) where T = FastTransforms. Anαβ (k, dynamic ( sp. a), dynamic ( sp. b) )
25
+ normalization (:: Type{T} , sp:: Jacobi , k:: Int ) where T = FastTransforms. Anαβ (k, sp. a, sp. b)
29
26
30
27
function Ultraspherical (J:: Jacobi )
31
28
if J. a == J. b
@@ -54,7 +51,7 @@ function canonicalspace(S::Jacobi)
54
51
Chebyshev (domain (S))
55
52
else
56
53
# return space with parameters in (-1,0.]
57
- Jacobi (mod (dynamic ( S. b) ,- 1 ),mod (dynamic ( S. a) ,- 1 ),domain (S))
54
+ Jacobi (mod (S. b,- 1 ),mod (S. a,- 1 ),domain (S))
58
55
end
59
56
end
60
57
@@ -121,8 +118,8 @@ jacobip(r::AbstractRange,α,β,x::Number) = jacobip(promote_type(typeof(α),type
121
118
122
119
jacobip (:: Type{T} ,n:: Integer ,α,β,v) where {T} = jacobip (T,n: n,α,β,v)[1 ]
123
120
jacobip (n:: Integer ,α,β,v) = jacobip (n: n,α,β,v)[1 ]
124
- jacobip (:: Type{T} ,n,S:: Jacobi ,v) where {T} = jacobip (T,n,dynamic ( S. a), dynamic ( S. b) ,v)
125
- jacobip (n,S:: Jacobi ,v) = jacobip (n,dynamic ( S. a), dynamic ( S. b) ,v)
121
+ jacobip (:: Type{T} ,n,S:: Jacobi ,v) where {T} = jacobip (T,n,S. a, S. b,v)
122
+ jacobip (n,S:: Jacobi ,v) = jacobip (n,S. a, S. b,v)
126
123
127
124
128
125
0 commit comments