@@ -12,9 +12,12 @@ Space(d::PiecewiseSegment) = ContinuousSpace(d)
12
12
13
13
isperiodic (C:: ContinuousSpace ) = isperiodic (domain (C))
14
14
15
+ const PiecewiseSpaceReal{CD} = PiecewiseSpace{CD,<: Any ,<: Real }
16
+ const PiecewiseSpaceRealChebyDirichlet11 =
17
+ PiecewiseSpaceReal{<: TupleOrVector{ChebyshevDirichlet{1,1}} }
18
+
15
19
spacescompatible (a:: ContinuousSpace ,b:: ContinuousSpace ) = domainscompatible (a,b)
16
- conversion_rule (a:: ContinuousSpace ,
17
- b:: PiecewiseSpace {<: Tuple{Vararg{ChebyshevDirichlet{1,1}}} ,<: Any ,<: Real }) = a
20
+ conversion_rule (a:: ContinuousSpace , b:: PiecewiseSpaceRealChebyDirichlet11 ) = a
18
21
19
22
plan_transform (sp:: ContinuousSpace ,vals:: AbstractVector ) =
20
23
TransformPlan {eltype(vals),typeof(sp),false,Nothing} (sp,nothing )
@@ -131,8 +134,6 @@ coefficients(cfsin::AbstractVector,A::ContinuousSpace,B::ContinuousSpace) =
131
134
132
135
133
136
# We implemnt conversion between continuous space and PiecewiseSpace with Chebyshev dirichlet
134
- const PiecewiseSpaceReal{CD} = PiecewiseSpace{CD,<: Any ,<: Real }
135
- const PiecewiseSpaceRealChebyDirichlet11 = PiecewiseSpaceReal{<: Tuple{Vararg{ChebyshevDirichlet{1,1}}} }
136
137
137
138
function Conversion (ps:: PiecewiseSpaceRealChebyDirichlet11 , cs:: ContinuousSpace )
138
139
@assert ps == canonicalspace (cs)
0 commit comments