@@ -40,199 +40,193 @@ import LazyBandedMatrices: SymTridiagonal
40
40
end
41
41
end
42
42
43
- @testset " Comparison with Lanczos and Classical, non-Clenshaw" begin
44
- @testset " w(x) = x^2*(1-x)" begin
45
- P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
46
- x = axes (P,1 )
47
- J = jacobimatrix (P)
48
- Jx = symmjacobim (J)
49
- w = (Jx^ 2 - Jx^ 3 )
50
- # compute Jacobi matrix via cholesky
51
- Jchol = cholesky_jacobimatrix (w)
52
- # compute Jacobi matrix via classical recurrence
53
- Q = Normalized (Jacobi (1 ,2 )[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
54
- Jclass = jacobimatrix (Q)
55
- # compute Jacobi matrix via Lanczos
56
- wf = x.^ 2 .* (1 .- x)
57
- Jlanc = jacobimatrix (LanczosPolynomial (@. (wf),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
58
- # Comparison with Lanczos
59
- @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
60
- # Comparison with Classical
61
- @test Jchol[1 : 500 ,1 : 500 ] ≈ Jclass[1 : 500 ,1 : 500 ]
62
- end
43
+ @testset " Comparison with Lanczos and Classical" begin
44
+ @testset " Not using Clenshaw" begin
45
+ @testset " w(x) = x^2*(1-x)" begin
46
+ P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
47
+ x = axes (P,1 )
48
+ J = jacobimatrix (P)
49
+ Jx = symmjacobim (J)
50
+ w = (Jx^ 2 - Jx^ 3 )
51
+ # compute Jacobi matrix via cholesky
52
+ Jchol = cholesky_jacobimatrix (w)
53
+ # compute Jacobi matrix via classical recurrence
54
+ Q = Normalized (Jacobi (1 ,2 )[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
55
+ Jclass = jacobimatrix (Q)
56
+ # compute Jacobi matrix via Lanczos
57
+ wf = x.^ 2 .* (1 .- x)
58
+ Jlanc = jacobimatrix (LanczosPolynomial (@. (wf),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
59
+ # Comparison with Lanczos
60
+ @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
61
+ # Comparison with Classical
62
+ @test Jchol[1 : 500 ,1 : 500 ] ≈ Jclass[1 : 500 ,1 : 500 ]
63
+ end
63
64
64
- @testset " w(x) = (1-x^2)" begin
65
- P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
66
- x = axes (P,1 )
67
- J = jacobimatrix (P)
68
- Jx = symmjacobim (J)
69
- w = (I - Jx^ 2 )
70
- # compute Jacobi matrix via cholesky
71
- Jchol = cholesky_jacobimatrix (w)
72
- # compute Jacobi matrix via Lanczos
73
- wf = (1 .- x.^ 2 )
74
- Jlanc = jacobimatrix (LanczosPolynomial (@. (wf),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
75
- # Comparison
76
- @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
77
- end
65
+ @testset " w(x) = (1-x^2)" begin
66
+ P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
67
+ x = axes (P,1 )
68
+ J = jacobimatrix (P)
69
+ Jx = symmjacobim (J)
70
+ w = (I - Jx^ 2 )
71
+ # compute Jacobi matrix via cholesky
72
+ Jchol = cholesky_jacobimatrix (w)
73
+ # compute Jacobi matrix via Lanczos
74
+ wf = (1 .- x.^ 2 )
75
+ Jlanc = jacobimatrix (LanczosPolynomial (@. (wf),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
76
+ # Comparison
77
+ @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
78
+ end
78
79
79
- @testset " w(x) = (1-x^4)" begin
80
- P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
81
- x = axes (P,1 )
82
- J = jacobimatrix (P)
83
- Jx = symmjacobim (J)
84
- w = (I - Jx^ 4 )
85
- # compute Jacobi matrix via cholesky
86
- Jchol = cholesky_jacobimatrix (w)
87
- # compute Jacobi matrix via Lanczos
88
- wf = (1 .- x.^ 4 )
89
- Jlanc = jacobimatrix (LanczosPolynomial (@. (wf),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
90
- # Comparison
91
- @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
92
- end
80
+ @testset " w(x) = (1-x^4)" begin
81
+ P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
82
+ x = axes (P,1 )
83
+ J = jacobimatrix (P)
84
+ Jx = symmjacobim (J)
85
+ w = (I - Jx^ 4 )
86
+ # compute Jacobi matrix via cholesky
87
+ Jchol = cholesky_jacobimatrix (w)
88
+ # compute Jacobi matrix via Lanczos
89
+ wf = (1 .- x.^ 4 )
90
+ Jlanc = jacobimatrix (LanczosPolynomial (@. (wf),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
91
+ # Comparison
92
+ @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
93
+ end
93
94
94
- @testset " w(x) = (1.014-x^3)" begin
95
- P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
96
- x = axes (P,1 )
97
- J = jacobimatrix (P)
98
- Jx = symmjacobim (J)
99
- t = 1.014
100
- w = (t* I - Jx^ 3 )
101
- # compute Jacobi matrix via cholesky
102
- Jchol = cholesky_jacobimatrix (w)
103
- # compute Jacobi matrix via Lanczos
104
- wf = (t .- x.^ 3 )
105
- Jlanc = jacobimatrix (LanczosPolynomial (@. (wf),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
106
- # Comparison
107
- @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
95
+ @testset " w(x) = (1.014-x^3)" begin
96
+ P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
97
+ x = axes (P,1 )
98
+ J = jacobimatrix (P)
99
+ Jx = symmjacobim (J)
100
+ t = 1.014
101
+ w = (t* I - Jx^ 3 )
102
+ # compute Jacobi matrix via cholesky
103
+ Jchol = cholesky_jacobimatrix (w)
104
+ # compute Jacobi matrix via Lanczos
105
+ wf = (t .- x.^ 3 )
106
+ Jlanc = jacobimatrix (LanczosPolynomial (@. (wf),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
107
+ # Comparison
108
+ @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
109
+ end
108
110
end
109
- end
110
111
111
- @testset " Comparison with Lanczos and Classical, with Clenshaw, polynomial weights" begin
112
- @testset " w(x) = x^2*(1-x)" begin
113
- P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
114
- x = axes (P,1 )
115
- J = jacobimatrix (P)
116
- Jx = symmjacobim (J)
117
- wf (x) = x^ 2 * (1 - x)
118
- # compute Jacobi matrix via cholesky
119
- W = P \ (wf .(x) .* P)
120
- Jchol = cholesky_jacobimatrix (Symmetric (W))
121
- # compute Jacobi matrix via classical recurrence
122
- Q = Normalized (Jacobi (1 ,2 )[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
123
- Jclass = jacobimatrix (Q)
124
- # compute Jacobi matrix via Lanczos
125
- Jlanc = jacobimatrix (LanczosPolynomial (@. (wf .(x)),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
126
- # Comparison with Lanczos
127
- @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
128
- # Comparison with Classical
129
- @test Jchol[1 : 500 ,1 : 500 ] ≈ Jclass[1 : 500 ,1 : 500 ]
130
- end
112
+ @testset " Using Clenshaw for polynomial weights" begin
113
+ @testset " w(x) = x^2*(1-x)" begin
114
+ P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
115
+ x = axes (P,1 )
116
+ J = jacobimatrix (P)
117
+ wf (x) = x^ 2 * (1 - x)
118
+ # compute Jacobi matrix via cholesky
119
+ W = P \ (wf .(x) .* P)
120
+ Jchol = cholesky_jacobimatrix (Symmetric (W))
121
+ # compute Jacobi matrix via classical recurrence
122
+ Q = Normalized (Jacobi (1 ,2 )[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
123
+ Jclass = jacobimatrix (Q)
124
+ # compute Jacobi matrix via Lanczos
125
+ Jlanc = jacobimatrix (LanczosPolynomial (@. (wf .(x)),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
126
+ # Comparison with Lanczos
127
+ @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
128
+ # Comparison with Classical
129
+ @test Jchol[1 : 500 ,1 : 500 ] ≈ Jclass[1 : 500 ,1 : 500 ]
130
+ end
131
131
132
- @testset " w(x) = (1-x^2)" begin
133
- P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
134
- x = axes (P,1 )
135
- J = jacobimatrix (P)
136
- Jx = symmjacobim (J)
137
- wf (x) = (1 - x^ 2 )
138
- # compute Jacobi matrix via cholesky
139
- W = P \ (wf .(x) .* P)
140
- Jchol = cholesky_jacobimatrix (Symmetric (W))
141
- # compute Jacobi matrix via Lanczos
142
- Jlanc = jacobimatrix (LanczosPolynomial (@. (wf .(x)),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
143
- # Comparison with Lanczos
144
- @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
145
- end
132
+ @testset " w(x) = (1-x^2)" begin
133
+ P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
134
+ x = axes (P,1 )
135
+ J = jacobimatrix (P)
136
+ wf (x) = (1 - x^ 2 )
137
+ # compute Jacobi matrix via cholesky
138
+ W = P \ (wf .(x) .* P)
139
+ Jchol = cholesky_jacobimatrix (Symmetric (W))
140
+ # compute Jacobi matrix via Lanczos
141
+ Jlanc = jacobimatrix (LanczosPolynomial (@. (wf .(x)),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
142
+ # Comparison with Lanczos
143
+ @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
144
+ end
146
145
147
- @testset " w(x) = (1-x^4)" begin
148
- P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
149
- x = axes (P,1 )
150
- J = jacobimatrix (P)
151
- Jx = symmjacobim (J)
152
- wf (x) = (1 - x^ 4 )
153
- # compute Jacobi matrix via cholesky
154
- W = P \ (wf .(x) .* P)
155
- Jchol = cholesky_jacobimatrix (Symmetric (W))
156
- # compute Jacobi matrix via Lanczos
157
- Jlanc = jacobimatrix (LanczosPolynomial (@. (wf .(x)),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
158
- # Comparison with Lanczos
159
- @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
160
- end
146
+ @testset " w(x) = (1-x^4)" begin
147
+ P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
148
+ x = axes (P,1 )
149
+ J = jacobimatrix (P)
150
+ wf (x) = (1 - x^ 4 )
151
+ # compute Jacobi matrix via cholesky
152
+ W = P \ (wf .(x) .* P)
153
+ Jchol = cholesky_jacobimatrix (Symmetric (W))
154
+ # compute Jacobi matrix via Lanczos
155
+ Jlanc = jacobimatrix (LanczosPolynomial (@. (wf .(x)),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
156
+ # Comparison with Lanczos
157
+ @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
158
+ end
161
159
162
- @testset " w(x) = (1.014-x^3)" begin
163
- P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
164
- x = axes (P,1 )
165
- J = jacobimatrix (P)
166
- Jx = symmjacobim (J)
167
- wf (x) = 1.014 - x ^ 4
168
- # compute Jacobi matrix via cholesky
169
- W = P \ ( wf .(x) .* P )
170
- Jchol = cholesky_jacobimatrix ( Symmetric (W))
171
- # compute Jacobi matrix via Lanczos
172
- Jlanc = jacobimatrix ( LanczosPolynomial ( @. ( wf .(x)), Normalized ( Legendre ()[ affine ( 0 .. 1 , Inclusion ( - 1 .. 1 )),:])))
173
- # Comparison with Lanczos
174
- @test Jchol[ 1 : 500 , 1 : 500 ] ≈ Jlanc[ 1 : 500 , 1 : 500 ]
160
+ @testset " w(x) = (1.014-x^3)" begin
161
+ P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
162
+ x = axes (P,1 )
163
+ J = jacobimatrix (P)
164
+ wf (x) = 1.014 - x ^ 4
165
+ # compute Jacobi matrix via cholesky
166
+ W = P \ ( wf .(x) .* P)
167
+ Jchol = cholesky_jacobimatrix ( Symmetric (W) )
168
+ # compute Jacobi matrix via Lanczos
169
+ Jlanc = jacobimatrix ( LanczosPolynomial ( @. ( wf .(x)), Normalized ( Legendre ()[ affine ( 0 .. 1 , Inclusion ( - 1 .. 1 )),:])))
170
+ # Comparison with Lanczos
171
+ @test Jchol[ 1 : 500 , 1 : 500 ] ≈ Jlanc[ 1 : 500 , 1 : 500 ]
172
+ end
175
173
end
176
- end
177
174
178
- @testset " Comparison with Lanczos and Classical, with Clenshaw, exponential weights" begin
179
- @testset " w(x) = exp(x)" begin
180
- P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
181
- x = axes (P,1 )
182
- J = jacobimatrix (P)
183
- Jx = symmjacobim (J)
184
- wf (x) = exp (x)
185
- # compute Jacobi matrix via cholesky
186
- W = P \ (wf .(x) .* P)
187
- Jchol = cholesky_jacobimatrix (Symmetric (W))
188
- # compute Jacobi matrix via Lanczos
189
- Jlanc = jacobimatrix (LanczosPolynomial (@. (wf .(x)),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
190
- # Comparison with Lanczos
191
- @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
175
+ @testset " Using Clenshaw with exponential weights" begin
176
+ @testset " w(x) = exp(x)" begin
177
+ P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
178
+ x = axes (P,1 )
179
+ J = jacobimatrix (P)
180
+ wf (x) = exp (x)
181
+ # compute Jacobi matrix via cholesky
182
+ W = P \ (wf .(x) .* P)
183
+ Jchol = cholesky_jacobimatrix (Symmetric (W))
184
+ # compute Jacobi matrix via Lanczos
185
+ Jlanc = jacobimatrix (LanczosPolynomial (@. (wf .(x)),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
186
+ # Comparison with Lanczos
187
+ @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
188
+ end
189
+
190
+ @testset " w(x) = (1-x)*exp(x)" begin
191
+ P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
192
+ x = axes (P,1 )
193
+ J = jacobimatrix (P)
194
+ wf (x) = (1 - x)* exp (x)
195
+ # compute Jacobi matrix via cholesky
196
+ W = P \ (wf .(x) .* P)
197
+ Jchol = cholesky_jacobimatrix (Symmetric (W))
198
+ # compute Jacobi matrix via Lanczos
199
+ Jlanc = jacobimatrix (LanczosPolynomial (@. (wf .(x)),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
200
+ # Comparison with Lanczos
201
+ @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
202
+ end
203
+
204
+ @testset " w(x) = (1-x^2)*exp(x^2)" begin
205
+ P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
206
+ x = axes (P,1 )
207
+ J = jacobimatrix (P)
208
+ wf (x) = (1 - x^ 2 )* exp (x^ 2 )
209
+ # compute Jacobi matrix via cholesky
210
+ W = P \ (wf .(x) .* P)
211
+ Jchol = cholesky_jacobimatrix (Symmetric (W))
212
+ # compute Jacobi matrix via Lanczos
213
+ Jlanc = jacobimatrix (LanczosPolynomial (@. (wf .(x)),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
214
+ # Comparison with Lanczos
215
+ @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
216
+ end
217
+
218
+ @testset " w(x) = x*(1-x^2)*exp(-x^2)" begin
219
+ P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
220
+ x = axes (P,1 )
221
+ J = jacobimatrix (P)
222
+ wf (x) = x* (1 - x^ 2 )* exp (- x^ 2 )
223
+ # compute Jacobi matrix via cholesky
224
+ W = P \ (wf .(x) .* P)
225
+ Jchol = cholesky_jacobimatrix (Symmetric (W))
226
+ # compute Jacobi matrix via Lanczos
227
+ Jlanc = jacobimatrix (LanczosPolynomial (@. (wf .(x)),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
228
+ # Comparison with Lanczos
229
+ @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
230
+ end
192
231
end
193
-
194
- @testset " w(x) = (1-x)*exp(x)" begin
195
- P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
196
- x = axes (P,1 )
197
- J = jacobimatrix (P)
198
- Jx = symmjacobim (J)
199
- wf (x) = (1 - x)* exp (x)
200
- # compute Jacobi matrix via cholesky
201
- W = P \ (wf .(x) .* P)
202
- Jchol = cholesky_jacobimatrix (Symmetric (W))
203
- # compute Jacobi matrix via Lanczos
204
- Jlanc = jacobimatrix (LanczosPolynomial (@. (wf .(x)),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
205
- # Comparison with Lanczos
206
- @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
207
- end
208
-
209
- @testset " w(x) = (1-x^2)*exp(x^2)" begin
210
- P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
211
- x = axes (P,1 )
212
- J = jacobimatrix (P)
213
- Jx = symmjacobim (J)
214
- wf (x) = (1 - x^ 2 )* exp (x^ 2 )
215
- # compute Jacobi matrix via cholesky
216
- W = P \ (wf .(x) .* P)
217
- Jchol = cholesky_jacobimatrix (Symmetric (W))
218
- # compute Jacobi matrix via Lanczos
219
- Jlanc = jacobimatrix (LanczosPolynomial (@. (wf .(x)),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
220
- # Comparison with Lanczos
221
- @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
222
- end
223
-
224
- @testset " w(x) = x*(1-x^2)*exp(-x^2)" begin
225
- P = Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])
226
- x = axes (P,1 )
227
- J = jacobimatrix (P)
228
- Jx = symmjacobim (J)
229
- wf (x) = x* (1 - x^ 2 )* exp (- x^ 2 )
230
- # compute Jacobi matrix via cholesky
231
- W = P \ (wf .(x) .* P)
232
- Jchol = cholesky_jacobimatrix (Symmetric (W))
233
- # compute Jacobi matrix via Lanczos
234
- Jlanc = jacobimatrix (LanczosPolynomial (@. (wf .(x)),Normalized (Legendre ()[affine (0 .. 1 ,Inclusion (- 1 .. 1 )),:])))
235
- # Comparison with Lanczos
236
- @test Jchol[1 : 500 ,1 : 500 ] ≈ Jlanc[1 : 500 ,1 : 500 ]
237
- end
238
- end
232
+ end
0 commit comments