@@ -176,7 +176,7 @@ TransformFactorization{T}(grid, ::Nothing, iplan) where T = TransformFactorizati
176
176
TransformFactorization(grid, nothing, iplan)
177
177
178
178
associates a planned inverse transform with a grid. That is, if `F` is a `TransformFactorization`, then
179
- `F \\ f` is equivalent to `F.iplan \ f[F.grid]`.
179
+ `F \\ f` is equivalent to `F.iplan \\ f[F.grid]`.
180
180
"""
181
181
TransformFactorization (grid, :: Nothing , iplan) = TransformFactorization {promote_type(eltype(eltype(grid)),eltype(iplan))} (grid, nothing , iplan)
182
182
209
209
ProjectionFactorization(F, inds)
210
210
211
211
projects a factorization to a subset of coefficients. That is, if `P` is a `ProjectionFactorization`
212
- then `P \ f` is equivalent to `(F \ f)[inds]`
212
+ then `P \\ f` is equivalent to `(F \ \ f)[inds]`
213
213
"""
214
214
struct ProjectionFactorization{T, FAC<: Factorization{T} , INDS} <: Factorization{T}
215
215
F:: FAC
@@ -227,7 +227,7 @@ _factorize(::SubBasisLayout, L) = ProjectionFactorization(factorize(parent(L)),
227
227
MappedFactorization(F, map)
228
228
229
229
remaps a factorization to a different domain. That is, if `M` is a `MappedFactorization`
230
- then `M \ f` is equivalent to `F \ f[map]`
230
+ then `M \\ f` is equivalent to `F \ \ f[map]`
231
231
"""
232
232
struct MappedFactorization{T, FAC<: Factorization{T} , MAP} <: Factorization{T}
233
233
F:: FAC
0 commit comments