|
| 1 | +function A_mul_B_vf!(P::RotationPlan, A::AbstractMatrix) |
| 2 | + N, M = size(A) |
| 3 | + snm = P.snm |
| 4 | + cnm = P.cnm |
| 5 | + @stepthreads for m = M÷2-1:-1:2 |
| 6 | + @inbounds for j = m:-2:2 |
| 7 | + for l = N-j:-1:1 |
| 8 | + s = snm[l+(j-2)*(2*N+3-j)÷2] |
| 9 | + c = cnm[l+(j-2)*(2*N+3-j)÷2] |
| 10 | + a1 = A[l+N*(2*m+1)] |
| 11 | + a2 = A[l+2+N*(2*m+1)] |
| 12 | + a3 = A[l+N*(2*m+2)] |
| 13 | + a4 = A[l+2+N*(2*m+2)] |
| 14 | + A[l+N*(2*m+1)] = c*a1 + s*a2 |
| 15 | + A[l+2+N*(2*m+1)] = c*a2 - s*a1 |
| 16 | + A[l+N*(2*m+2)] = c*a3 + s*a4 |
| 17 | + A[l+2+N*(2*m+2)] = c*a4 - s*a3 |
| 18 | + end |
| 19 | + end |
| 20 | + end |
| 21 | + A |
| 22 | +end |
| 23 | + |
| 24 | +function At_mul_B_vf!(P::RotationPlan, A::AbstractMatrix) |
| 25 | + N, M = size(A) |
| 26 | + snm = P.snm |
| 27 | + cnm = P.cnm |
| 28 | + @stepthreads for m = M÷2-1:-1:2 |
| 29 | + @inbounds for j = reverse(m:-2:2) |
| 30 | + for l = 1:N-j |
| 31 | + s = snm[l+(j-2)*(2*N+3-j)÷2] |
| 32 | + c = cnm[l+(j-2)*(2*N+3-j)÷2] |
| 33 | + a1 = A[l+N*(2*m+1)] |
| 34 | + a2 = A[l+2+N*(2*m+1)] |
| 35 | + a3 = A[l+N*(2*m+2)] |
| 36 | + a4 = A[l+2+N*(2*m+2)] |
| 37 | + A[l+N*(2*m+1)] = c*a1 - s*a2 |
| 38 | + A[l+2+N*(2*m+1)] = c*a2 + s*a1 |
| 39 | + A[l+N*(2*m+2)] = c*a3 - s*a4 |
| 40 | + A[l+2+N*(2*m+2)] = c*a4 + s*a3 |
| 41 | + end |
| 42 | + end |
| 43 | + end |
| 44 | + A |
| 45 | +end |
| 46 | + |
| 47 | + |
| 48 | +function Base.A_mul_B!(Y1::Matrix, Y2::Matrix, SP::SlowSphericalHarmonicPlan, X1::Matrix, X2::Matrix) |
| 49 | + RP, p1, p2, B = SP.RP, SP.p1, SP.p2, SP.B |
| 50 | + copy!(B, X1) |
| 51 | + A_mul_B_vf!(RP, B) |
| 52 | + M, N = size(X1) |
| 53 | + A_mul_B_col_J!!(Y1, p2, B, 1) |
| 54 | + for J = 2:4:N |
| 55 | + A_mul_B_col_J!!(Y1, p1, B, J) |
| 56 | + J < N && A_mul_B_col_J!!(Y1, p1, B, J+1) |
| 57 | + end |
| 58 | + for J = 4:4:N |
| 59 | + A_mul_B_col_J!!(Y1, p2, B, J) |
| 60 | + J < N && A_mul_B_col_J!!(Y1, p2, B, J+1) |
| 61 | + end |
| 62 | + copy!(B, X2) |
| 63 | + A_mul_B_vf!(RP, B) |
| 64 | + M, N = size(X2) |
| 65 | + A_mul_B_col_J!!(Y2, p2, B, 1) |
| 66 | + for J = 2:4:N |
| 67 | + A_mul_B_col_J!!(Y2, p1, B, J) |
| 68 | + J < N && A_mul_B_col_J!!(Y2, p1, B, J+1) |
| 69 | + end |
| 70 | + for J = 4:4:N |
| 71 | + A_mul_B_col_J!!(Y2, p2, B, J) |
| 72 | + J < N && A_mul_B_col_J!!(Y2, p2, B, J+1) |
| 73 | + end |
| 74 | + Y1 |
| 75 | +end |
| 76 | + |
| 77 | +function Base.At_mul_B!(Y1::Matrix, Y2::Matrix, SP::SlowSphericalHarmonicPlan, X1::Matrix, X2::Matrix) |
| 78 | + RP, p1inv, p2inv, B = SP.RP, SP.p1inv, SP.p2inv, SP.B |
| 79 | + copy!(B, X1) |
| 80 | + M, N = size(X1) |
| 81 | + A_mul_B_col_J!!(Y1, p2inv, B, 1) |
| 82 | + for J = 2:4:N |
| 83 | + A_mul_B_col_J!!(Y1, p1inv, B, J) |
| 84 | + J < N && A_mul_B_col_J!!(Y1, p1inv, B, J+1) |
| 85 | + end |
| 86 | + for J = 4:4:N |
| 87 | + A_mul_B_col_J!!(Y1, p2inv, B, J) |
| 88 | + J < N && A_mul_B_col_J!!(Y1, p2inv, B, J+1) |
| 89 | + end |
| 90 | + sph_zero_spurious_modes_vf!(At_mul_B_vf!(RP, Y1)) |
| 91 | + copy!(B, X2) |
| 92 | + M, N = size(X2) |
| 93 | + A_mul_B_col_J!!(Y2, p2inv, B, 1) |
| 94 | + for J = 2:4:N |
| 95 | + A_mul_B_col_J!!(Y2, p1inv, B, J) |
| 96 | + J < N && A_mul_B_col_J!!(Y2, p1inv, B, J+1) |
| 97 | + end |
| 98 | + for J = 4:4:N |
| 99 | + A_mul_B_col_J!!(Y2, p2inv, B, J) |
| 100 | + J < N && A_mul_B_col_J!!(Y2, p2inv, B, J+1) |
| 101 | + end |
| 102 | + sph_zero_spurious_modes_vf!(At_mul_B_vf!(RP, Y2)) |
| 103 | + Y1 |
| 104 | +end |
| 105 | + |
| 106 | +Base.Ac_mul_B!(Y1::Matrix, Y2::Matrix, SP::SlowSphericalHarmonicPlan, X1::Matrix, X2::Matrix) = At_mul_B!(Y1, Y2, SP, X1, X2) |
| 107 | + |
| 108 | + |
| 109 | +function Base.A_mul_B!(Y1::Matrix{T}, Y2::Matrix{T}, P::SynthesisPlan{T}, X1::Matrix{T}, X2::Matrix{T}) where T |
| 110 | + M, N = size(X1) |
| 111 | + |
| 112 | + # Column synthesis |
| 113 | + PCe = P.planθ[1] |
| 114 | + PCo = P.planθ[2] |
| 115 | + |
| 116 | + A_mul_B_col_J!(Y1, PCo, X1, 1) |
| 117 | + |
| 118 | + for J = 2:4:N |
| 119 | + X1[1,J] *= two(T) |
| 120 | + J < N && (X1[1,J+1] *= two(T)) |
| 121 | + A_mul_B_col_J!(Y1, PCe, X1, J) |
| 122 | + J < N && A_mul_B_col_J!(Y1, PCe, X1, J+1) |
| 123 | + X1[1,J] *= half(T) |
| 124 | + J < N && (X1[1,J+1] *= half(T)) |
| 125 | + end |
| 126 | + for J = 4:4:N |
| 127 | + A_mul_B_col_J!(Y1, PCo, X1, J) |
| 128 | + J < N && A_mul_B_col_J!(Y1, PCo, X1, J+1) |
| 129 | + end |
| 130 | + scale!(half(T), Y1) |
| 131 | + |
| 132 | + # Row synthesis |
| 133 | + scale!(inv(sqrt(π)), Y1) |
| 134 | + invsqrttwo = inv(sqrt(2)) |
| 135 | + @inbounds for i = 1:M Y1[i] *= invsqrttwo end |
| 136 | + |
| 137 | + temp = P.temp |
| 138 | + planφ = P.planφ |
| 139 | + C = P.C |
| 140 | + for I = 1:M |
| 141 | + copy_row_I!(temp, Y1, I) |
| 142 | + row_synthesis!(planφ, C, temp) |
| 143 | + copy_row_I!(Y1, temp, I) |
| 144 | + end |
| 145 | + |
| 146 | + M, N = size(X2) |
| 147 | + |
| 148 | + # Column synthesis |
| 149 | + PCe = P.planθ[1] |
| 150 | + PCo = P.planθ[2] |
| 151 | + |
| 152 | + A_mul_B_col_J!(Y2, PCo, X2, 1) |
| 153 | + |
| 154 | + for J = 2:4:N |
| 155 | + X2[1,J] *= two(T) |
| 156 | + J < N && (X2[1,J+1] *= two(T)) |
| 157 | + A_mul_B_col_J!(Y2, PCe, X2, J) |
| 158 | + J < N && A_mul_B_col_J!(Y2, PCe, X2, J+1) |
| 159 | + X2[1,J] *= half(T) |
| 160 | + J < N && (X2[1,J+1] *= half(T)) |
| 161 | + end |
| 162 | + for J = 4:4:N |
| 163 | + A_mul_B_col_J!(Y2, PCo, X2, J) |
| 164 | + J < N && A_mul_B_col_J!(Y2, PCo, X2, J+1) |
| 165 | + end |
| 166 | + scale!(half(T), Y2) |
| 167 | + |
| 168 | + # Row synthesis |
| 169 | + scale!(inv(sqrt(π)), Y2) |
| 170 | + invsqrttwo = inv(sqrt(2)) |
| 171 | + @inbounds for i = 1:M Y2[i] *= invsqrttwo end |
| 172 | + |
| 173 | + temp = P.temp |
| 174 | + planφ = P.planφ |
| 175 | + C = P.C |
| 176 | + for I = 1:M |
| 177 | + copy_row_I!(temp, Y2, I) |
| 178 | + row_synthesis!(planφ, C, temp) |
| 179 | + copy_row_I!(Y2, temp, I) |
| 180 | + end |
| 181 | + Y1 |
| 182 | +end |
| 183 | + |
| 184 | +function Base.A_mul_B!(Y1::Matrix{T}, Y2::Matrix{T}, P::AnalysisPlan{T}, X1::Matrix{T}, X2::Matrix{T}) where T |
| 185 | + M, N = size(X1) |
| 186 | + |
| 187 | + # Row analysis |
| 188 | + temp = P.temp |
| 189 | + planφ = P.planφ |
| 190 | + C = P.C |
| 191 | + for I = 1:M |
| 192 | + copy_row_I!(temp, X1, I) |
| 193 | + row_analysis!(planφ, C, temp) |
| 194 | + copy_row_I!(Y1, temp, I) |
| 195 | + end |
| 196 | + |
| 197 | + # Column analysis |
| 198 | + PCe = P.planθ[1] |
| 199 | + PCo = P.planθ[2] |
| 200 | + |
| 201 | + A_mul_B_col_J!(Y1, PCo, Y1, 1) |
| 202 | + for J = 2:4:N |
| 203 | + A_mul_B_col_J!(Y1, PCe, Y1, J) |
| 204 | + J < N && A_mul_B_col_J!(Y1, PCe, Y1, J+1) |
| 205 | + Y1[1,J] *= half(T) |
| 206 | + J < N && (Y1[1,J+1] *= half(T)) |
| 207 | + end |
| 208 | + for J = 4:4:N |
| 209 | + A_mul_B_col_J!(Y1, PCo, Y1, J) |
| 210 | + J < N && A_mul_B_col_J!(Y1, PCo, Y1, J+1) |
| 211 | + end |
| 212 | + scale!(sqrt(π)*inv(T(M)), Y1) |
| 213 | + sqrttwo = sqrt(2) |
| 214 | + @inbounds for i = 1:M Y1[i] *= sqrttwo end |
| 215 | + |
| 216 | + M, N = size(X2) |
| 217 | + |
| 218 | + # Row analysis |
| 219 | + temp = P.temp |
| 220 | + planφ = P.planφ |
| 221 | + C = P.C |
| 222 | + for I = 1:M |
| 223 | + copy_row_I!(temp, X2, I) |
| 224 | + row_analysis!(planφ, C, temp) |
| 225 | + copy_row_I!(Y2, temp, I) |
| 226 | + end |
| 227 | + |
| 228 | + # Column analysis |
| 229 | + PCe = P.planθ[1] |
| 230 | + PCo = P.planθ[2] |
| 231 | + |
| 232 | + A_mul_B_col_J!(Y2, PCo, Y2, 1) |
| 233 | + for J = 2:4:N |
| 234 | + A_mul_B_col_J!(Y2, PCe, Y2, J) |
| 235 | + J < N && A_mul_B_col_J!(Y2, PCe, Y2, J+1) |
| 236 | + Y2[1,J] *= half(T) |
| 237 | + J < N && (Y2[1,J+1] *= half(T)) |
| 238 | + end |
| 239 | + for J = 4:4:N |
| 240 | + A_mul_B_col_J!(Y2, PCo, Y2, J) |
| 241 | + J < N && A_mul_B_col_J!(Y2, PCo, Y2, J+1) |
| 242 | + end |
| 243 | + scale!(sqrt(π)*inv(T(M)), Y2) |
| 244 | + sqrttwo = sqrt(2) |
| 245 | + @inbounds for i = 1:M Y2[i] *= sqrttwo end |
| 246 | + |
| 247 | + Y1 |
| 248 | +end |
| 249 | + |
| 250 | + |
| 251 | +function sph_zero_spurious_modes_vf!(A::AbstractMatrix) |
| 252 | + M, N = size(A) |
| 253 | + n = N÷2 |
| 254 | + A[M, 1] = 0 |
| 255 | + @inbounds for j = 2:n-1 |
| 256 | + @simd for i = M-j+2:M |
| 257 | + A[i,2j] = 0 |
| 258 | + A[i,2j+1] = 0 |
| 259 | + end |
| 260 | + end |
| 261 | + @inbounds @simd for i = M-n+2:M |
| 262 | + A[i,2n] = 0 |
| 263 | + 2n < N && (A[i,2n+1] = 0) |
| 264 | + end |
| 265 | + A |
| 266 | +end |
| 267 | + |
| 268 | +function sphrandvf(::Type{T}, m::Int, n::Int) where T |
| 269 | + A = zeros(T, m, 2n-1) |
| 270 | + for i = 1:m-1 |
| 271 | + A[i,1] = rand(T) |
| 272 | + end |
| 273 | + for j = 1:n-1 |
| 274 | + for i = 1:m-j+1 |
| 275 | + A[i,2j] = rand(T) |
| 276 | + A[i,2j+1] = rand(T) |
| 277 | + end |
| 278 | + end |
| 279 | + A |
| 280 | +end |
| 281 | + |
| 282 | +function sphrandnvf(::Type{T}, m::Int, n::Int) where T |
| 283 | + A = zeros(T, m, 2n-1) |
| 284 | + for i = 1:m-1 |
| 285 | + A[i,1] = randn(T) |
| 286 | + end |
| 287 | + for j = 1:n-1 |
| 288 | + for i = 1:m-j+1 |
| 289 | + A[i,2j] = randn(T) |
| 290 | + A[i,2j+1] = randn(T) |
| 291 | + end |
| 292 | + end |
| 293 | + A |
| 294 | +end |
| 295 | + |
| 296 | +function sphonesvf(::Type{T}, m::Int, n::Int) where T |
| 297 | + A = zeros(T, m, 2n-1) |
| 298 | + for i = 1:m-1 |
| 299 | + A[i,1] = one(T) |
| 300 | + end |
| 301 | + for j = 1:n-1 |
| 302 | + for i = 1:m-j+1 |
| 303 | + A[i,2j] = one(T) |
| 304 | + A[i,2j+1] = one(T) |
| 305 | + end |
| 306 | + end |
| 307 | + A |
| 308 | +end |
0 commit comments