|
111 | 111 |
|
112 | 112 | function cheb2legTH{S}(::Type{S},n)
|
113 | 113 | t = zeros(S,n-1)
|
114 |
| - t[1:2:end] = Λ(0:one(S):div(n-2,2),-half(S),one(S)) |
| 114 | + t[1:2:end] = Λ.(0:one(S):div(n-2,2), -half(S), one(S)) |
115 | 115 | T = TriangularToeplitz(t,:U)
|
116 |
| - h = Λ(1:half(S):n-1,zero(S),3half(S)) |
| 116 | + h = Λ.(1:half(S):n-1, zero(S), 3half(S)) |
117 | 117 | H = Hankel(h[1:n-1],h[n-1:end])
|
118 | 118 | D = 1:one(S):n-1
|
119 | 119 | DL = (3half(S):n-half(S))./D
|
@@ -169,11 +169,11 @@ function *(P::ChebyshevToLegendrePlanTH,v::AbstractVector)
|
169 | 169 | [dot(w,v);P.toeplitzhankel*view(v,2:n)]
|
170 | 170 | end
|
171 | 171 |
|
172 |
| -th_leg2chebplan{S}(::Type{S},n)=ToeplitzHankelPlan(leg2chebTH(S,n)...,ones(S,n)) |
173 |
| -th_cheb2legplan{S}(::Type{S},n)=ChebyshevToLegendrePlanTH(ToeplitzHankelPlan(cheb2legTH(S,n)...)) |
174 |
| -th_leg2chebuplan{S}(::Type{S},n)=ToeplitzHankelPlan(leg2chebuTH(S,n)...,1:n,ones(S,n)) |
175 |
| -th_ultra2ultraplan{S}(::Type{S},n,λ₁,λ₂)=ToeplitzHankelPlan(ultra2ultraTH(S,n,λ₁,λ₂)...) |
176 |
| -th_jac2jacplan{S}(::Type{S},n,α,β,γ,δ)=ToeplitzHankelPlan(jac2jacTH(S,n,α,β,γ,δ)...) |
| 172 | +th_leg2chebplan{S}(::Type{S},n) = ToeplitzHankelPlan(leg2chebTH(S,n)...,ones(S,n)) |
| 173 | +th_cheb2legplan{S}(::Type{S},n) = ChebyshevToLegendrePlanTH(ToeplitzHankelPlan(cheb2legTH(S,n)...)) |
| 174 | +th_leg2chebuplan{S}(::Type{S},n) = ToeplitzHankelPlan(leg2chebuTH(S,n)...,1:n,ones(S,n)) |
| 175 | +th_ultra2ultraplan{S}(::Type{S},n,λ₁,λ₂) = ToeplitzHankelPlan(ultra2ultraTH(S,n,λ₁,λ₂)...) |
| 176 | +th_jac2jacplan{S}(::Type{S},n,α,β,γ,δ) = ToeplitzHankelPlan(jac2jacTH(S,n,α,β,γ,δ)...) |
177 | 177 |
|
178 | 178 |
|
179 | 179 | th_leg2cheb(v) = th_leg2chebplan(eltype(v),length(v))*v
|
|
0 commit comments