Skip to content

Commit 8da320b

Browse files
update progress meter
add arXiv reference
1 parent 09778d2 commit 8da320b

File tree

5 files changed

+6
-7
lines changed

5 files changed

+6
-7
lines changed

README.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -108,10 +108,10 @@ julia> norm(F-H)
108108
julia> F = sphrandn(Float64, 1024, 1024);
109109

110110
julia> G = sph2fourier(F; sketch = :none);
111-
Pre-computing thin plan...100%|██████████████████████████████████████████████████| Time: 0:00:04
111+
Pre-computing...100%|███████████████████████████████████████████| Time: 0:00:04
112112

113113
julia> H = fourier2sph(G; sketch = :none);
114-
Pre-computing thin plan...100%|██████████████████████████████████████████████████| Time: 0:00:04
114+
Pre-computing...100%|███████████████████████████████████████████| Time: 0:00:04
115115

116116
julia> norm(F-H)
117117
1.1510623098225283e-12
@@ -130,6 +130,6 @@ As with other fast transforms, `plan_sph2fourier` saves effort by caching the pr
130130

131131
[4] R. M. Slevinsky. <a href="https://doi.org/10.1093/imanum/drw070">On the use of Hahn's asymptotic formula and stabilized recurrence for a fast, simple, and stable Chebyshev—Jacobi transform</a>, in press at *IMA J. Numer. Anal.*, 2017.
132132

133-
[5] R. M. Slevinsky. <a href="https://arxiv.org/abs/">Fast and backward stable transforms between spherical harmonic expansions and bivariate Fourier series</a>, arXiv, 2017.
133+
[5] R. M. Slevinsky. <a href="https://arxiv.org/abs/1705.05448">Fast and backward stable transforms between spherical harmonic expansions and bivariate Fourier series</a>, arXiv, 2017.
134134

135135
[6] A. Townsend, M. Webb, and S. Olver. <a href="https://doi.org/10.1090/mcom/3277">Fast polynomial transforms based on Toeplitz and Hankel matrices</a>, in press at *Math. Comp.*, 2017.

docs/src/index.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ In numerical analysis, it is customary to expand a function in a basis:
66
```math
77
f(x) \sim \sum_{\ell=0}^{\infty} f_{\ell} \phi_{\ell}(x).
88
```
9-
It may be more convenient to transform our representation to one in a new basis, say, ``\{\psi_m(x)\}_{m\ge0}``:
9+
It may be necessary to transform our representation to one in a new basis, say, ``\{\psi_m(x)\}_{m\ge0}``:
1010
```math
1111
f(x) \sim \sum_{m=0}^{\infty} g_m \psi_m(x).
1212
```

src/SphericalHarmonics/fastplan.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ function FastSphericalHarmonicPlan{T}(A::Matrix{T}, L::Int; opts...)
2222
Ce = eye(T, M)
2323
Co = eye(T, M)
2424
BF = Vector{Butterfly{T}}(n-2)
25-
P = Progress(n-2, 0.1, "Pre-computing fast plan...", 50)
25+
P = Progress(n-2, 0.1, "Pre-computing...", 43)
2626
for j = 1:2:n-2
2727
A_mul_B!(Ce, RP.layers[j])
2828
BF[j] = Butterfly(Ce, L; isorthogonal = true, opts...)

src/SphericalHarmonics/thinplan.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@ function ThinSphericalHarmonicPlan{T}(A::Matrix{T}, L::Int; opts...)
2626
Ce = eye(T, M)
2727
Co = eye(T, M)
2828
BF = Vector{Butterfly{T}}(n-2)
29-
P = Progress(n-2, 0.1, "Pre-computing thin plan...", 50)
29+
P = Progress(n-2, 0.1, "Pre-computing...", 43)
3030
for j = 1:2:n-2
3131
A_mul_B!(Ce, RP.layers[j])
3232
checklayer(j+1) && (BF[j] = Butterfly(Ce, L; isorthogonal = true, opts...))

test/sphericalharmonictests.jl

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,6 @@ for θ in (0.123, 0.456)
3535
S0 = sum(cospi((ℓ-1)*θ)*B[ℓ,1] forin 1:n+1)
3636
SA = sum(sphevaluatepi(θ,ℓ-1,0)*A[ℓ,1] forin 1:n+1)
3737
@test norm(S0-SA) < 1000eps()
38-
push!(nrms, norm(S0-SA))
3938
for m in 3:2:n+1
4039
S0 = sum(cospi((ℓ-1)*θ)*B[ℓ,2m-2] forin 1:n+1)
4140
SA = sum(sphevaluatepi(θ,ℓ+m-2,m-1)*A[ℓ,2m-2] forin 1:n+1)

0 commit comments

Comments
 (0)