@@ -43,7 +43,7 @@ using FastTransforms, Base.Test
43
43
44
44
N = round .([Int],logspace (1 ,3 ,10 ))
45
45
46
- for n in N, ϵ in (1e-4 ,1e-8 ,1e-12 ,eps (Float64))
46
+ for n in N, ϵ in (1e-4 , 1e-8 , 1e-12 , eps (Float64))
47
47
c = complex (rand (n))
48
48
err_bnd = 500 * ϵ* n* norm (c)
49
49
@@ -69,16 +69,15 @@ using FastTransforms, Base.Test
69
69
end
70
70
71
71
# Check that if points/frequencies are indeed uniform, then it's equal to the fft.
72
-
73
- n = 1000
74
- c = complex (rand (n))
75
- ω = collect (0.0 : n- 1 )
76
- x = ω/ n
77
- fftc = fft (c)
78
- @test norm (nufft1 (c, ω, eps ()) - fftc) == 0
79
- @test norm (nufft2 (c, x, eps ()) - fftc) == 0
80
- @test norm (nufft3 (c, x, ω, eps ()) - fftc) == 0
81
-
72
+ for n in (1000 ,), ϵ in (eps (Float64), 0.0 )
73
+ c = complex (rand (n))
74
+ ω = collect (0.0 : n- 1 )
75
+ x = ω/ n
76
+ fftc = fft (c)
77
+ @test norm (nufft1 (c, ω, ϵ) - fftc) == 0
78
+ @test norm (nufft2 (c, x, ϵ) - fftc) == 0
79
+ @test norm (nufft3 (c, x, ω, ϵ) - fftc) == 0
80
+ end
82
81
83
82
function nudft1 {T<:AbstractFloat} (C:: Matrix{Complex{T}} , ω1:: AbstractVector{T} , ω2:: AbstractVector{T} )
84
83
# Nonuniform discrete Fourier transform of type I-I
0 commit comments