Skip to content

Commit c867502

Browse files
remove nightly tests
1 parent cefa8a1 commit c867502

File tree

3 files changed

+7
-8
lines changed

3 files changed

+7
-8
lines changed

.github/workflows/ci.yml

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,6 @@ jobs:
1111
version:
1212
- '1.3'
1313
- '1.5'
14-
- 'nightly'
1514
os:
1615
- ubuntu-latest
1716
- macOS-latest

Project.toml

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
name = "FastTransforms"
22
uuid = "057dd010-8810-581a-b7be-e3fc3b93f78c"
3-
version = "0.10.2"
3+
version = "0.11.0"
44

55
[deps]
66
AbstractFFTs = "621f4979-c628-5d54-868e-fcf4e3e8185c"
@@ -19,15 +19,15 @@ Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
1919
ToeplitzMatrices = "c751599d-da0a-543b-9d20-d0a503d91d24"
2020

2121
[compat]
22-
AbstractFFTs = "0.4, 0.5"
23-
ArrayLayouts = "0.3.7, 0.4"
22+
AbstractFFTs = "0.5"
23+
ArrayLayouts = "0.4"
2424
BinaryProvider = "0.5"
2525
DSP = "0.6"
2626
FFTW = "1"
2727
FastGaussQuadrature = "0.4"
2828
FastTransforms_jll = "0.4.0"
29-
FillArrays = "0.8, 0.9"
29+
FillArrays = "0.10"
3030
Reexport = "0.2"
31-
SpecialFunctions = "0.8, 0.9, 0.10"
31+
SpecialFunctions = "0.10, 1"
3232
ToeplitzMatrices = "0.6"
3333
julia = "1.3"

examples/disk.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -54,7 +54,7 @@ U[1, 1]*sqrt(π)
5454

5555
# Using an orthonormal basis, the integral of $[f(x,y)]^2$ over the disk is
5656
# approximately the square of the 2-norm of the coefficients:
57-
norm(U)^2 - π/(2*sqrt(2))*log1p(sqrt(2))
57+
(norm(U)^2, π/(2*sqrt(2))*log1p(sqrt(2)))
5858

5959
# But there's more! Next, we repeat the experiment using the Dunkl-Xu
6060
# orthonormal polynomials supported on the rectangularized disk.
@@ -101,4 +101,4 @@ U[1, 1]*sqrt(π)
101101

102102
# Using an orthonormal basis, the integral of $[f(x,y)]^2$ over the disk is
103103
# approximately the square of the 2-norm of the coefficients:
104-
norm(U)^2 - π/(2*sqrt(2))*log1p(sqrt(2))
104+
(norm(U)^2, π/(2*sqrt(2))*log1p(sqrt(2)))

0 commit comments

Comments
 (0)