Skip to content

Commit 6533f26

Browse files
committed
fix misleading comments
1 parent 3346636 commit 6533f26

File tree

1 file changed

+12
-12
lines changed

1 file changed

+12
-12
lines changed

test/test_disk.jl

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -267,7 +267,7 @@ end
267267
# generate fractional Laplacian
268268
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
269269
Δ_Zfrac = Z \ (Δfrac * WZ)
270-
# define function whose fractional Laplacian is a known constant
270+
# define function whose fractional Laplacian is known
271271
u = @. (1 - x^2 - y^2).^β
272272
# explicit and computed solutions
273273
fexplicit0(d,α) = 2^α*gamma/2+1)*gamma((d+α)/2)/gamma(d/2) # note that here, α = 2*β
@@ -284,7 +284,7 @@ end
284284
# generate fractional Laplacian
285285
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
286286
Δ_Zfrac = Z \ (Δfrac * WZ)
287-
# define function whose fractional Laplacian is a known constant
287+
# define function whose fractional Laplacian is known
288288
u = @. (1 - x^2 - y^2).^β
289289
# computed solution
290290
f = Z*(Δ_Zfrac*(WZ \ u))
@@ -300,7 +300,7 @@ end
300300
# generate fractional Laplacian
301301
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
302302
Δ_Zfrac = Z \ (Δfrac * WZ)
303-
# define function whose fractional Laplacian is a known constant
303+
# define function whose fractional Laplacian is known
304304
u = @. (1 - x^2 - y^2).^β
305305
# computed solution
306306
f = Z*(Δ_Zfrac*(WZ \ u))
@@ -316,7 +316,7 @@ end
316316
# generate fractional Laplacian
317317
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
318318
Δ_Zfrac = Z \ (Δfrac * WZ)
319-
# define function whose fractional Laplacian is a known constant
319+
# define function whose fractional Laplacian is known
320320
u = @. (1 - x^2 - y^2).^+1)
321321
# explicit and computed solutions
322322
fexplicit1(d,α,x) = 2^α*gamma/2+2)*gamma((d+α)/2)/gamma(d/2)*(1-(1+α/d)*norm(x)^2) # α = 2*β
@@ -335,7 +335,7 @@ end
335335
# generate fractional Laplacian
336336
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
337337
Δ_Zfrac = Z \ (Δfrac * WZ)
338-
# define function whose fractional Laplacian is a known constant
338+
# define function whose fractional Laplacian is known
339339
u = @. (1 - x^2 - y^2).^+1)
340340
# explicit and computed solutions
341341
f = Z*(Δ_Zfrac*(WZ \ u))
@@ -354,7 +354,7 @@ end
354354
# generate fractional Laplacian
355355
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
356356
Δ_Zfrac = Z \ (Δfrac * WZ)
357-
# define function whose fractional Laplacian is a known constant
357+
# define function whose fractional Laplacian is known
358358
u = @. (1 - x^2 - y^2).^(β)*x
359359
# explicit and computed solutions
360360
fexplicit2(d,α,x) = 2^α*gamma/2+1)*gamma((d+α)/2+1)/gamma(d/2+1)*x[1] # α = 2*β
@@ -373,7 +373,7 @@ end
373373
# generate fractional Laplacian
374374
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
375375
Δ_Zfrac = Z \ (Δfrac * WZ)
376-
# define function whose fractional Laplacian is a known constant
376+
# define function whose fractional Laplacian is known
377377
u = @. (1 - x^2 - y^2).^(β)*y
378378
# explicit and computed solutions
379379
fexplicit3(d,α,x) = 2^α*gamma/2+1)*gamma((d+α)/2+1)/gamma(d/2+1)*x[2] # α = 2*β
@@ -393,7 +393,7 @@ end
393393
# generate fractional Laplacian
394394
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
395395
Δ_Zfrac = Z \ (Δfrac * WZ)
396-
# define function whose fractional Laplacian is a known constant
396+
# define function whose fractional Laplacian is known
397397
u = @. (1 - x^2 - y^2).^+1)*x
398398
# explicit and computed solutions
399399
fexplicit4(d,α,x) = 2^α*gamma/2+2)*gamma((d+α)/2+1)/gamma(d/2+1)*(1-(1+α/(d+2))*norm(x)^2)*x[1] # α = 2*β
@@ -412,7 +412,7 @@ end
412412
# generate fractional Laplacian
413413
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
414414
Δ_Zfrac = Z \ (Δfrac * WZ)
415-
# define function whose fractional Laplacian is a known constant
415+
# define function whose fractional Laplacian is known
416416
u = @. (1 - x^2 - y^2).^+1)*y
417417
# explicit and computed solutions
418418
fexplicit5(d,α,x) = 2^α*gamma/2+2)*gamma((d+α)/2+1)/gamma(d/2+1)*(1-(1+α/(d+2))*norm(x)^2)*x[2] # α = 2*β
@@ -434,7 +434,7 @@ end
434434
# generate fractional Laplacian
435435
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
436436
Δ_Zfrac = Z \ (Δfrac * WZ)
437-
# define function whose fractional Laplacian is a known constant
437+
# define function whose fractional Laplacian is known
438438
uexplicit = @. (1 - x^2 - y^2).^+1)
439439
uexplicitcfs = WZ \ uexplicit
440440
# RHS
@@ -454,7 +454,7 @@ end
454454
# generate fractional Laplacian
455455
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
456456
Δ_Zfrac = Z \ (Δfrac * WZ)
457-
# define function whose fractional Laplacian is a known constant
457+
# define function whose fractional Laplacian is known
458458
uexplicit = @. (1 - x^2 - y^2).^+1)*y
459459
uexplicitcfs = WZ \ uexplicit
460460
# RHS
@@ -473,7 +473,7 @@ end
473473
# generate fractional Laplacian
474474
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
475475
Δ_Zfrac = Z \ (Δfrac * WZ)
476-
# define function whose fractional Laplacian is a known constant
476+
# define function whose fractional Laplacian is known
477477
uexplicit = @. (1 - x^2 - y^2).^+1)*x
478478
uexplicitcfs = WZ \ uexplicit
479479
# RHS

0 commit comments

Comments
 (0)