@@ -34,33 +34,34 @@ using ForwardDiff
34
34
@test WP == WP
35
35
36
36
x, y = coordinates (P)
37
+ L = WP \ WQ
38
+ R = Q \ P
39
+
40
+ ∂x = Derivative (P, (1 ,0 ))
41
+ ∂y = Derivative (P, (0 ,1 ))
42
+
43
+ Dx = Q \ (∂x * P)
44
+ Dy = Q \ (∂y * P)
45
+
46
+ X = P \ (x .* P)
47
+ Y = P \ (y .* P)
48
+
37
49
38
50
@testset " lowering/raising" begin
39
- L = WP \ WQ
40
51
@test WP[SVector (0.1 ,0.2 ),Block .(1 : 6 )]' L[Block .(1 : 6 ),Block .(1 : 4 )] ≈ WQ[SVector (0.1 ,0.2 ),Block .(1 : 4 )]'
41
- R = Q \ P
42
52
@test Q[SVector (0.1 ,0.2 ),Block .(1 : 4 )]' R[Block .(1 : 4 ),Block .(1 : 4 )] ≈ P[SVector (0.1 ,0.2 ),Block .(1 : 4 )]'
43
53
44
54
@test (DunklXuDisk () \ WeightedDunklXuDisk (1.0 ))[Block .(1 : N), Block .(1 : N)] ≈ (WeightedDunklXuDisk (0.0 ) \ WeightedDunklXuDisk (1.0 ))[Block .(1 : N), Block .(1 : N)]
45
55
end
46
56
47
57
48
58
@testset " jacobi" begin
49
- X = P \ (x .* P)
50
- Y = P \ (y .* P)
51
-
52
59
@test (L * R)[Block .(1 : N), Block .(1 : N)] ≈ (I - X^ 2 - Y^ 2 )[Block .(1 : N), Block .(1 : N)]
53
60
@test P[SVector (0.1 ,0.2 ),Block .(1 : 5 )]' X[Block .(1 : 5 ),Block .(1 : 4 )] ≈ 0.1 P[SVector (0.1 ,0.2 ),Block .(1 : 4 )]'
54
61
@test P[SVector (0.1 ,0.2 ),Block .(1 : 5 )]' Y[Block .(1 : 5 ),Block .(1 : 4 )] ≈ 0.2 P[SVector (0.1 ,0.2 ),Block .(1 : 4 )]'
55
62
end
56
63
57
64
@testset " derivatives" begin
58
- ∂x = Derivative (P, (1 ,0 ))
59
- ∂y = Derivative (P, (0 ,1 ))
60
-
61
- Dx = Q \ (∂x * P)
62
- Dy = Q \ (∂y * P)
63
-
64
65
@test Q[SVector (0.1 ,0.2 ),Block .(1 : 3 )]' Dx[Block .(1 : 3 ),Block .(1 : 4 )] ≈ [ForwardDiff. gradient (𝐱 -> DunklXuDisk {eltype(𝐱)} (P. β)[𝐱,k], SVector (0.1 ,0.2 ))[1 ] for k= 1 : 10 ]'
65
66
Mx = Q \ (x .* Q)
66
67
My = Q \ (y .* Q)
0 commit comments