|
| 1 | +""" |
| 2 | + TensorProduct(kernels...) |
| 3 | +
|
| 4 | +Create a tensor product kernel from kernels ``k_1, \\ldots, k_n``, i.e., |
| 5 | +a kernel ``k`` that is given by |
| 6 | +```math |
| 7 | +k(x, y) = \\prod_{i=1}^n k_i(x_i, y_i). |
| 8 | +``` |
| 9 | +
|
| 10 | +The `kernels` can be specified as individual arguments, a tuple, or an iterable data |
| 11 | +structure such as an array. Using a tuple or individual arguments guarantees that |
| 12 | +`TensorProduct` is concretely typed but might lead to large compilation times if the |
| 13 | +number of kernels is large. |
| 14 | +""" |
| 15 | +struct TensorProduct{K} <: Kernel |
| 16 | + kernels::K |
| 17 | +end |
| 18 | + |
| 19 | +function TensorProduct(kernel::Kernel, kernels::Kernel...) |
| 20 | + return TensorProduct((kernel, kernels...)) |
| 21 | +end |
| 22 | + |
| 23 | +Base.length(kernel::TensorProduct) = length(kernel.kernels) |
| 24 | + |
| 25 | +(kernel::TensorProduct)(x, y) = kappa(kernel, x, y) |
| 26 | +function kappa(kernel::TensorProduct, x, y) |
| 27 | + return prod(kappa(k, xi, yi) for (k, xi, yi) in zip(kernel.kernels, x, y)) |
| 28 | +end |
| 29 | + |
| 30 | +# TODO: General implementation of `kernelmatrix` and `kerneldiagmatrix` |
| 31 | +# Default implementation assumes 1D observations |
| 32 | + |
| 33 | +function kernelmatrix!( |
| 34 | + K::AbstractMatrix, |
| 35 | + kernel::TensorProduct, |
| 36 | + X::AbstractMatrix; |
| 37 | + obsdim::Int = defaultobs, |
| 38 | +) |
| 39 | + obsdim ∈ (1, 2) || "obsdim should be 1 or 2 (see docs of kernelmatrix))" |
| 40 | + |
| 41 | + featuredim = feature_dim(obsdim) |
| 42 | + if !check_dims(K, X, X, featuredim, obsdim) |
| 43 | + throw(DimensionMismatch("Dimensions of the target array K $(size(K)) are not " * |
| 44 | + "consistent with X $(size(X))")) |
| 45 | + end |
| 46 | + |
| 47 | + size(X, featuredim) == length(kernel) || |
| 48 | + error("number of kernels and groups of features are not consistent") |
| 49 | + |
| 50 | + kernels_and_inputs = zip(kernel.kernels, eachslice(X; dims = featuredim)) |
| 51 | + kernelmatrix!(K, first(kernels_and_inputs)...) |
| 52 | + for (k, Xi) in Iterators.drop(kernels_and_inputs, 1) |
| 53 | + K .*= kernelmatrix(k, Xi) |
| 54 | + end |
| 55 | + |
| 56 | + return K |
| 57 | +end |
| 58 | + |
| 59 | +function kernelmatrix!( |
| 60 | + K::AbstractMatrix, |
| 61 | + kernel::TensorProduct, |
| 62 | + X::AbstractMatrix, |
| 63 | + Y::AbstractMatrix; |
| 64 | + obsdim::Int = defaultobs, |
| 65 | +) |
| 66 | + obsdim ∈ (1, 2) || error("obsdim should be 1 or 2 (see docs of kernelmatrix))") |
| 67 | + |
| 68 | + featuredim = feature_dim(obsdim) |
| 69 | + if !check_dims(K, X, Y, featuredim, obsdim) |
| 70 | + throw(DimensionMismatch("Dimensions $(size(K)) of the target array K are not " * |
| 71 | + "consistent with X ($(size(X))) and Y ($(size(Y)))")) |
| 72 | + end |
| 73 | + |
| 74 | + size(X, featuredim) == length(kernel) || |
| 75 | + error("number of kernels and groups of features are not consistent") |
| 76 | + |
| 77 | + kernels_and_inputs = zip( |
| 78 | + kernel.kernels, |
| 79 | + eachslice(X; dims = featuredim), |
| 80 | + eachslice(Y; dims = featuredim), |
| 81 | + ) |
| 82 | + kernelmatrix!(K, first(kernels_and_inputs)...) |
| 83 | + for (k, Xi, Yi) in Iterators.drop(kernels_and_inputs, 1) |
| 84 | + K .*= kernelmatrix(k, Xi, Yi) |
| 85 | + end |
| 86 | + |
| 87 | + return K |
| 88 | +end |
| 89 | + |
| 90 | +# mapreduce with multiple iterators requires Julia 1.2 or later. |
| 91 | + |
| 92 | +function kernelmatrix( |
| 93 | + kernel::TensorProduct, |
| 94 | + X::AbstractMatrix; |
| 95 | + obsdim::Int = defaultobs, |
| 96 | +) |
| 97 | + obsdim ∈ (1, 2) || error("obsdim should be 1 or 2 (see docs of kernelmatrix))") |
| 98 | + |
| 99 | + featuredim = feature_dim(obsdim) |
| 100 | + if !check_dims(X, X, featuredim, obsdim) |
| 101 | + throw(DimensionMismatch("Dimensions of the target array K $(size(K)) are not " * |
| 102 | + "consistent with X $(size(X))")) |
| 103 | + end |
| 104 | + |
| 105 | + size(X, featuredim) == length(kernel) || |
| 106 | + error("number of kernels and groups of features are not consistent") |
| 107 | + |
| 108 | + return mapreduce((x, y) -> x .* y, |
| 109 | + zip(kernel.kernels, eachslice(X; dims = featuredim))) do (k, Xi) |
| 110 | + kernelmatrix(k, Xi) |
| 111 | + end |
| 112 | +end |
| 113 | + |
| 114 | +function kernelmatrix( |
| 115 | + kernel::TensorProduct, |
| 116 | + X::AbstractMatrix, |
| 117 | + Y::AbstractMatrix; |
| 118 | + obsdim::Int = defaultobs |
| 119 | +) |
| 120 | + obsdim ∈ (1, 2) || error("obsdim should be 1 or 2 (see docs of kernelmatrix))") |
| 121 | + |
| 122 | + featuredim = feature_dim(obsdim) |
| 123 | + if !check_dims(X, Y, featuredim, obsdim) |
| 124 | + throw(DimensionMismatch("Dimensions $(size(K)) of the target array K are not " * |
| 125 | + "consistent with X ($(size(X))) and Y ($(size(Y)))")) |
| 126 | + end |
| 127 | + |
| 128 | + size(X, featuredim) == length(kernel) || |
| 129 | + error("number of kernels and groups of features are not consistent") |
| 130 | + |
| 131 | + kernels_and_inputs = zip( |
| 132 | + kernel.kernels, |
| 133 | + eachslice(X; dims = featuredim), |
| 134 | + eachslice(Y; dims = featuredim), |
| 135 | + ) |
| 136 | + return mapreduce((x, y) -> x .* y, kernels_and_inputs) do (k, Xi, Yi) |
| 137 | + kernelmatrix(k, Xi, Yi) |
| 138 | + end |
| 139 | +end |
| 140 | + |
| 141 | +function kerneldiagmatrix!( |
| 142 | + K::AbstractVector, |
| 143 | + kernel::TensorProduct, |
| 144 | + X::AbstractMatrix; |
| 145 | + obsdim::Int = defaultobs |
| 146 | +) |
| 147 | + obsdim ∈ (1, 2) || error("obsdim should be 1 or 2 (see docs of kernelmatrix))") |
| 148 | + if length(K) != size(X, obsdim) |
| 149 | + throw(DimensionMismatch("Dimensions of the target array K $(size(K)) are not " * |
| 150 | + "consistent with X $(size(X))")) |
| 151 | + end |
| 152 | + |
| 153 | + featuredim = feature_dim(obsdim) |
| 154 | + size(X, featuredim) == length(kernel) || |
| 155 | + error("number of kernels and groups of features are not consistent") |
| 156 | + |
| 157 | + kernels_and_inputs = zip(kernel.kernels, eachslice(X; dims = featuredim)) |
| 158 | + kerneldiagmatrix!(K, first(kernels_and_inputs)...) |
| 159 | + for (k, Xi) in Iterators.drop(kernels_and_inputs, 1) |
| 160 | + K .*= kerneldiagmatrix(k, Xi) |
| 161 | + end |
| 162 | + |
| 163 | + return K |
| 164 | +end |
| 165 | + |
| 166 | +function kerneldiagmatrix( |
| 167 | + kernel::TensorProduct, |
| 168 | + X::AbstractMatrix; |
| 169 | + obsdim::Int = defaultobs |
| 170 | +) |
| 171 | + obsdim ∈ (1,2) || error("obsdim should be 1 or 2 (see docs of kernelmatrix))") |
| 172 | + |
| 173 | + featuredim = feature_dim(obsdim) |
| 174 | + size(X, featuredim) == length(kernel) || |
| 175 | + error("number of kernels and groups of features are not consistent") |
| 176 | + |
| 177 | + kernels_and_inputs = zip(kernel.kernels, eachslice(X; dims = featuredim)) |
| 178 | + return mapreduce((x, y) -> x .* y, kernels_and_inputs) do (k, Xi) |
| 179 | + kerneldiagmatrix(k, Xi) |
| 180 | + end |
| 181 | +end |
| 182 | + |
| 183 | +Base.show(io::IO, kernel::TensorProduct) = printshifted(io, kernel, 0) |
| 184 | + |
| 185 | +function printshifted(io::IO, kernel::TensorProduct, shift::Int) |
| 186 | + print(io, "Tensor product of ", length(kernel), " kernels:") |
| 187 | + for k in kernel.kernels |
| 188 | + print(io, "\n") |
| 189 | + for _ in 1:(shift + 1) |
| 190 | + print(io, "\t") |
| 191 | + end |
| 192 | + print(io, "- ") |
| 193 | + printshifted(io, k, shift + 2) |
| 194 | + end |
| 195 | +end |
0 commit comments