Skip to content

Commit cf5374e

Browse files
committed
Formatting details
1 parent 6d59bb3 commit cf5374e

File tree

3 files changed

+12
-7
lines changed

3 files changed

+12
-7
lines changed

src/kernels/exponential.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@ The γ-exponential kernel is an isotropic Mercer kernel given by the formula:
4949
"""
5050
struct GammaExponentialKernel{Tγ<:Real} <: BaseKernel
5151
γ::Vector{Tγ}
52-
function GammaExponentialKernel(;gamma::T=2.0::T=gamma) where {T<:Real}
52+
function GammaExponentialKernel(;gamma::T=2.0, γ::T=gamma) where {T<:Real}
5353
@check_args(GammaExponentialKernel, γ, γ >= zero(T), "γ > 0")
5454
return new{T}([γ])
5555
end

src/kernels/matern.jl

Lines changed: 9 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -8,15 +8,20 @@ For `ν=n+1/2, n=0,1,2,...` it can be simplified and you should instead use [`Ex
88
"""
99
struct MaternKernel{Tν<:Real} <: BaseKernel
1010
ν::Vector{Tν}
11-
function MaternKernel(;nu::T=1.5::T=nu) where {T<:Real}
11+
function MaternKernel(;nu::T=1.5, ν::T=nu) where {T<:Real}
1212
@check_args(MaternKernel, ν, ν > zero(T), "ν > 0")
1313
return new{T}([ν])
1414
end
1515
end
1616

1717
@inline function kappa::MaternKernel, d::Real)
1818
ν = first.ν)
19-
iszero(d) ? one(d) : exp((one(d)-ν)*logtwo-logabsgamma(ν)[1] + ν*log(sqrt(2ν)*d)+log(besselk(ν,sqrt(2ν)*d)))
19+
iszero(d) ? one(d) :
20+
exp(
21+
(one(d) - ν) * logtwo - logabsgamma(ν)[1] +
22+
ν * log(sqrt(2ν) * d) +
23+
log(besselk(ν, sqrt(2ν) * d))
24+
)
2025
end
2126

2227
metric(::MaternKernel) = Euclidean()
@@ -30,7 +35,7 @@ The matern 3/2 kernel is an isotropic Mercer kernel given by the formula:
3035
"""
3136
struct Matern32Kernel <: BaseKernel end
3237

33-
kappa::Matern32Kernel, d::Real) = (1+sqrt(3)*d)*exp(-sqrt(3)*d)
38+
kappa::Matern32Kernel, d::Real) = (1 + sqrt(3) * d) * exp(-sqrt(3) * d)
3439

3540
metric(::Matern32Kernel) = Euclidean()
3641

@@ -43,6 +48,6 @@ The matern 5/2 kernel is an isotropic Mercer kernel given by the formula:
4348
"""
4449
struct Matern52Kernel <: BaseKernel end
4550

46-
kappa::Matern52Kernel, d::Real) = (1+sqrt(5)*d+5*d^2/3)*exp(-sqrt(5)*d)
51+
kappa::Matern52Kernel, d::Real) = (1 + sqrt(5) * d + 5 * d^2 / 3) * exp(-sqrt(5) * d)
4752

4853
metric(::Matern52Kernel) = Euclidean()

src/kernels/rationalquad.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ where `α` is a shape parameter of the Euclidean distance. Check [`GammaRational
88
"""
99
struct RationalQuadraticKernel{Tα<:Real} <: BaseKernel
1010
α::Vector{Tα}
11-
function RationalQuadraticKernel(;alpha::T=2.0::T=alpha) where {T}
11+
function RationalQuadraticKernel(;alpha::T=2.0, α::T=alpha) where {T}
1212
@check_args(RationalQuadraticKernel, α, α > zero(T), "α > 1")
1313
return new{T}([α])
1414
end
@@ -29,7 +29,7 @@ where `α` is a shape parameter of the Euclidean distance and `γ` is another sh
2929
struct GammaRationalQuadraticKernel{Tα<:Real, Tγ<:Real} <: BaseKernel
3030
α::Vector{Tα}
3131
γ::Vector{Tγ}
32-
function GammaRationalQuadraticKernel(;alpha::Tα=2.0,gamma::Tγ=2.0::Tα=alpha, γ::Tγ=gamma) where {Tα<:Real, Tγ<:Real}
32+
function GammaRationalQuadraticKernel(;alpha::Tα=2.0, gamma::Tγ=2.0, α::Tα=alpha, γ::Tγ=gamma) where {Tα<:Real, Tγ<:Real}
3333
@check_args(GammaRationalQuadraticKernel, α, α > one(Tα), "α > 1")
3434
@check_args(GammaRationalQuadraticKernel, γ, γ >= one(Tγ), "γ >= 1")
3535
return new{Tα, Tγ}([α], [γ])

0 commit comments

Comments
 (0)