|
| 1 | +# using CUDAnative |
| 2 | +# device!(0) |
| 3 | +# using CuArrays |
| 4 | +using GPUArrays |
| 5 | +using BlockArrays: _BlockArray, PseudoBlockArray, BlockArray, BlockMatrix, BlockVector, |
| 6 | + nblocks, Block, cumulsizes, AbstractBlockVector |
| 7 | +using BlockBandedMatrices: BandedBlockBandedMatrix, _BandedBlockBandedMatrix, |
| 8 | + blockbandwidths, subblockbandwidths, blockbandwidth, |
| 9 | + BandedBlockBandedSizes |
| 10 | +using LinearAlgebra: BLAS |
| 11 | +using BandedMatrices: _BandedMatrix |
| 12 | +using SharedArrays |
| 13 | +using LazyArrays |
| 14 | +import Distributed |
| 15 | + |
| 16 | +import Adapt: adapt |
| 17 | +import LinearAlgebra |
| 18 | + |
| 19 | +############### Loot and plunder |
| 20 | +# BlockArrays |
| 21 | +adapt(T::Type{<:AbstractArray}, b::BlockArray) = |
| 22 | + _BlockArray(T.(b.blocks), b.block_sizes) |
| 23 | +adapt(T::Type{<:AbstractArray}, b::PseudoBlockArray) = |
| 24 | + PseudoBlockArray(T(b.blocks), b.block_sizes) |
| 25 | +adapt(T::Type{<:PseudoBlockArray}, b::BlockArray) = T(b.blocks, b.block_sizes) |
| 26 | +adapt(T::Type{<:BlockArray}, b::PseudoBlockArray) = T(b.blocks, b.block_sizes) |
| 27 | +# CuArrays and BlockArrays |
| 28 | +if @isdefined CuArray |
| 29 | + adapt(T::Type{<:CuArray}, b::PseudoBlockArray) = adapt(T, BlockArray(b)) |
| 30 | +end |
| 31 | +############### |
| 32 | + |
| 33 | +adapt(T::Type, b::BandedBlockBandedMatrix) = |
| 34 | + _BandedBlockBandedMatrix(adapt(T, b.data), b.block_sizes) |
| 35 | + |
| 36 | + |
| 37 | +function LinearAlgebra.mul!(c::BlockVector{T}, |
| 38 | + A::BandedBlockBandedMatrix{T, <: BlockMatrix}, |
| 39 | + x::BlockVector{T}) where T |
| 40 | + @assert nblocks(A, 1) == nblocks(c, 1) |
| 41 | + @assert cumulsizes(A, 1) == cumulsizes(c, 1) |
| 42 | + @assert nblocks(A, 2) == nblocks(x, 1) |
| 43 | + @assert cumulsizes(A, 2) == cumulsizes(x, 1) |
| 44 | + |
| 45 | + for block in c.blocks |
| 46 | + fill!(block, zero(eltype(block))) |
| 47 | + end |
| 48 | + l, u = blockbandwidths(A) |
| 49 | + λ, μ = subblockbandwidths(A) |
| 50 | + N,M = nblocks(A) |
| 51 | + |
| 52 | + @inbounds for i = 1:N, j = max(1,i-l):min(M,i+u) |
| 53 | + BLAS.gbmv!('N', size(view(A, Block(i, j)), 1), λ, μ, one(T), |
| 54 | + A.data.blocks[i - j + u + 1, j], |
| 55 | + x.blocks[j], one(T), c.blocks[i]) |
| 56 | + end |
| 57 | + |
| 58 | + c |
| 59 | +end |
| 60 | + |
| 61 | +function banded_mul!(c::BlockVector{T}, |
| 62 | + A::BandedBlockBandedMatrix{T, <: BlockMatrix}, |
| 63 | + x::AbstractBlockVector{T}) where T |
| 64 | + @assert nblocks(A, 1) == nblocks(c, 1) |
| 65 | + @assert cumulsizes(A, 1) == cumulsizes(c, 1) |
| 66 | + @assert nblocks(A, 2) == nblocks(x, 1) |
| 67 | + @assert cumulsizes(A, 2) == cumulsizes(x, 1) |
| 68 | + |
| 69 | + for block in c.blocks |
| 70 | + fill!(block, zero(eltype(block))) |
| 71 | + end |
| 72 | + l, u = blockbandwidths(A) |
| 73 | + λ, μ = subblockbandwidths(A) |
| 74 | + N, M = nblocks(A) |
| 75 | + |
| 76 | + @inbounds for i = 1:N, j = max(1,i-l):min(M,i+u) |
| 77 | + B = _BandedMatrix(A.data.blocks[i - j + u + 1, j], |
| 78 | + size(view(A, Block(i, j)), 1), |
| 79 | + λ, μ) |
| 80 | + c[Block(i)] .+= Mul(B, x.blocks[j]) |
| 81 | + end |
| 82 | + |
| 83 | + c |
| 84 | +end |
| 85 | + |
| 86 | +function nofill_mul!(Cblock::BandedBlockBandedMatrix{T, <: BlockMatrix}, |
| 87 | + Ablock::BandedBlockBandedMatrix{T, <: BlockMatrix}, |
| 88 | + Xblock::BandedBlockBandedMatrix{T, <: BlockMatrix}) where T |
| 89 | + @assert nblocks(Ablock, 1) == nblocks(Cblock, 1) |
| 90 | + @assert cumulsizes(Ablock, 1) == cumulsizes(Cblock, 1) |
| 91 | + @assert nblocks(Ablock, 2) == nblocks(Xblock, 1) |
| 92 | + @assert cumulsizes(Ablock, 2) == cumulsizes(Xblock, 1) |
| 93 | + @assert nblocks(Xblock, 2) == nblocks(Cblock, 2) |
| 94 | + @assert cumulsizes(Xblock, 2) == cumulsizes(Xblock, 2) |
| 95 | + |
| 96 | + lₐ, uₐ = blockbandwidths(Ablock) |
| 97 | + lₓ, uₓ = blockbandwidths(xblock) |
| 98 | + λ, μ = subblockbandwidths(Ablock) |
| 99 | + N,M = nblocks(Ablock) |
| 100 | + M, K = nblocks(Xblock) |
| 101 | + |
| 102 | + @inbounds for i = 1:N, j = max(1,i-lₐ):min(M,i+uₐ), k = max(1, j - lₓ):min(j + uₓ, K) |
| 103 | + BLAS.gbmv!('N', size(view(Ablock, Block(i, j)), 1), λ, μ, one(T), |
| 104 | + Ablock.data.blocks[i - j + u + 1, j], |
| 105 | + Xblock.blocks[j], one(T), Cblock.blocks[i]) |
| 106 | + end |
| 107 | + |
| 108 | + Cblock |
| 109 | +end |
| 110 | + |
| 111 | +using Test |
| 112 | + |
| 113 | +function testme() |
| 114 | + @testset "block-banded on NVIDIA gpus" begin |
| 115 | + |
| 116 | + @testset "BlockArray Adapters" begin |
| 117 | + bmat = BlockArray{Float64}(undef, [1, 1], [2, 2]) |
| 118 | + @test adapt(JLArray, bmat) isa BlockArray{T, 2, JLArray{T, 2}} where T |
| 119 | + @test eltype(adapt(JLArray, bmat)) === Float64 |
| 120 | + if @isdefined CuArray |
| 121 | + @test cu(bmat) isa BlockArray{T, 2, JLArray{T, 2}} where T |
| 122 | + @test eltype(cu(bmat)) === Float32 |
| 123 | + end |
| 124 | + end |
| 125 | + |
| 126 | + @testset "PseudoBlockArray Adapters" begin |
| 127 | + bmat = PseudoBlockArray{Float64}(undef, [1, 1], [2, 2]) |
| 128 | + @test eltype(adapt(JLArray, bmat)) === Float64 |
| 129 | + @test adapt(JLArray, bmat) isa PseudoBlockArray |
| 130 | + if @isdefined CuArray |
| 131 | + @test !(adapt(CuArray, bmat) isa PseudoBlockArray) |
| 132 | + @test adapt(CuArray, bmat) isa BlockArray{T, 2, JLArray{T, 2}} where T |
| 133 | + @test cu(bmat) isa BlockArray{T, 2, JLArray{T, 2}} where T |
| 134 | + @test eltype(cu(bmat)) === Float32 |
| 135 | + end |
| 136 | + end |
| 137 | + |
| 138 | + @testset "PseudoBlockArray Adapters" begin |
| 139 | + bmat = BandedBlockBandedMatrix{Float64}(undef, ([1, 1], [2, 2]), (1, 2), (1, 1)) |
| 140 | + @test adapt(JLArray, bmat) isa BandedBlockBandedMatrix |
| 141 | + @test adapt(JLArray, bmat).data isa PseudoBlockArray{T, 2, JLArray{T, 2}} where T |
| 142 | + @test eltype(adapt(JLArray, bmat)) === Float64 |
| 143 | + if @isdefined CuArray |
| 144 | + @test adapt(CuArray, bmat).data isa BlockArray{T, 2, CuArray{T, 2}} where T |
| 145 | + @test cu(bmat) isa BandedBlockBandedMatrix |
| 146 | + @test cu(bmat).data isa BlockArray{T, 2, JLArray{T, 2}} where T |
| 147 | + @test eltype(cu(bmat)) === Float32 |
| 148 | + end |
| 149 | + end |
| 150 | + |
| 151 | + @testset "Multiplication" begin |
| 152 | + N, M = rand(1:20, 2) |
| 153 | + l, u, λ, μ = rand(0:2, 4) |
| 154 | + n, m = rand(max(l, u, λ, μ):20, N), rand(max(l, u, λ, μ):20, M) |
| 155 | + A = BandedBlockBandedMatrix{Float64}(undef, (n, m), (l, u), (λ, μ)) |
| 156 | + A.data .= rand.() |
| 157 | + Ablock = adapt(BlockArray, A) |
| 158 | + cblock = BlockArray(Array{Float64, 1}(undef, size(A, 1)), n) |
| 159 | + cblock .= rand.() |
| 160 | + x = PseudoBlockArray(Array{Float64, 1}(undef, size(A, 2)), m) |
| 161 | + x .= rand.() |
| 162 | + xblock = adapt(BlockArray, x) |
| 163 | + |
| 164 | + @test LinearAlgebra.mul!(cblock, Ablock, xblock) ≈ A * x |
| 165 | + cblock .= 0 |
| 166 | + @test banded_mul!(cblock, Ablock, xblock) ≈ A * x |
| 167 | + end |
| 168 | + end |
| 169 | +end |
| 170 | + |
| 171 | +using BenchmarkTools |
| 172 | +using Statistics |
| 173 | + |
| 174 | +function benchmarks() |
| 175 | + suite = BenchmarkGroup() |
| 176 | + suite["viabm"] = BenchmarkGroup() |
| 177 | + suite["pseudo"] = BenchmarkGroup() |
| 178 | + suite["block"] = BenchmarkGroup() |
| 179 | + possibles = [5, 10, 100, 500, 1000] |
| 180 | + for N in possibles #, n in possibles |
| 181 | + n = N |
| 182 | + suite["pseudo"]["N=$N n=$n"] = BenchmarkGroup() |
| 183 | + suite["block"]["N=$N n=$n"] = BenchmarkGroup() |
| 184 | + suite["viabm"]["N=$N n=$n"] = BenchmarkGroup() |
| 185 | + |
| 186 | + l, u, λ, μ = rand(0:2, 4) |
| 187 | + M, m = N, n |
| 188 | + |
| 189 | + A = BandedBlockBandedMatrix{Float64}( |
| 190 | + undef, (repeat([n], N), repeat([m], M)), (l, u), (λ, μ)) |
| 191 | + A.data .= rand.() |
| 192 | + c = PseudoBlockArray(Array{Float64, 1}(undef, size(A, 1)), repeat([n], N)) |
| 193 | + c .= rand.() |
| 194 | + x = PseudoBlockArray(Array{Float64, 1}(undef, size(A, 2)), repeat([m], M)) |
| 195 | + x .= rand.() |
| 196 | + |
| 197 | + suite["pseudo"]["N=$N n=$n"] = @benchmarkable begin |
| 198 | + $c .= Mul($A, $x) |
| 199 | + end |
| 200 | + suite["block"]["N=$N n=$n"] = @benchmarkable begin |
| 201 | + LinearAlgebra.mul!($(adapt(BlockArray, c)), $(adapt(BlockArray, A)), |
| 202 | + $(adapt(BlockArray, x))) |
| 203 | + end |
| 204 | + suite["viabm"]["N=$N n=$n"] = @benchmarkable begin |
| 205 | + banded_mul!($(adapt(BlockArray, c)), $(adapt(BlockArray, A)), |
| 206 | + $(adapt(BlockArray, x))) |
| 207 | + end |
| 208 | + end |
| 209 | + suite |
| 210 | +end |
| 211 | + |
| 212 | +block_ratio(result, name; method=median) = |
| 213 | + ratio(method(result["block"][name]), method(result["pseudo"][name])) |
| 214 | +viabm_ratio(result, name; method=median) = |
| 215 | + ratio(method(result["viabm"][name]), method(result["block"][name])) |
0 commit comments