@@ -83,13 +83,15 @@ BandedBlockBandedMatrix{T}(::Uninitialized, block_sizes::BandedBlockBandedSizes)
83
83
_BandedBlockBandedMatrix (
84
84
PseudoBlockArray {T} (uninitialized, block_sizes. data_block_sizes), block_sizes)
85
85
86
- @doc """
87
- BlockBandedMatrix {T}(uninitialized, (rows, cols), (l, u), (λ, μ))
86
+ """
87
+ BandedBlockBandedMatrix {T}(uninitialized, (rows, cols), (l, u), (λ, μ))
88
88
89
89
returns an uninitialized `sum(rows)`×`sum(cols)` banded-block-banded matrix `A`
90
90
of type `T` with block-bandwidths `(l,u)` and where `A[Block(K,J)]`
91
91
is a `BandedMatrix{T}` of size `rows[K]`×`cols[J]` with bandwidths `(λ,μ)`.
92
92
"""
93
+ BandedBlockBandedMatrix
94
+
93
95
BandedBlockBandedMatrix {T} (:: Uninitialized , dims:: NTuple{2, AbstractVector{Int}} ,
94
96
lu:: NTuple{2, Int} , λμ:: NTuple{2, Int} ) where T =
95
97
BandedBlockBandedMatrix {T} (uninitialized, BandedBlockBandedSizes (dims... , lu... , λμ... ))
@@ -352,15 +354,15 @@ end
352
354
# end
353
355
# end
354
356
355
- @doc """
357
+ """
356
358
subblockbandwidths(A)
357
359
358
360
returns the sub-block bandwidths of `A`, where `A` is a banded-block-banded
359
361
matrix. In other words, `A[Block(K,J)]` will return a `BandedMatrix` with
360
362
bandwidths given by `subblockbandwidths(A)`.
361
363
"""
362
364
subblockbandwidths (A:: BandedBlockBandedMatrix ) = A. λ, A. μ
363
- @doc """
365
+ """
364
366
subblockbandwidth(A, i)
365
367
366
368
returns the sub-block lower (`i == 1`) or upper (`i == 2`) bandwidth of `A`,
0 commit comments