Skip to content

SymTridiagonal ql #112

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Aug 5, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -17,16 +17,16 @@ MatrixFactorizations = "a3b82374-2e81-5b9e-98ce-41277c0e4c87"
SemiseparableMatrices = "f8ebbe35-cbfb-4060-bf7f-b10e4670cf57"

[compat]
ArrayLayouts = "0.8.9"
ArrayLayouts = "0.8.11"
BandedMatrices = "0.17"
BlockArrays = "0.16.14"
BlockBandedMatrices = "0.11.5"
DSP = "0.7"
FillArrays = "0.13"
InfiniteArrays = "0.12"
LazyArrays = "0.22"
LazyBandedMatrices = "0.8"
MatrixFactorizations = "0.9"
LazyBandedMatrices = "0.8.1"
MatrixFactorizations = "0.9.2"
SemiseparableMatrices = "0.3"
julia = "1.6"

Expand Down
2 changes: 1 addition & 1 deletion examples/toeplitz.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ using InfiniteLinearAlgebra, BandedMatrices, PyPlot
# Basic routines for plotting
###

function ℓ11(A,λ; kwds...)
function ℓ11(A,λ; kwds...)
try
abs(ql(A-λ*I; kwds...).L[1,1])
catch DomainError
Expand Down
6 changes: 3 additions & 3 deletions src/InfiniteLinearAlgebra.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,10 +17,10 @@ import FillArrays: AbstractFill, getindex_value, axes_print_matrix_row
import InfiniteArrays: OneToInf, InfUnitRange, Infinity, PosInfinity, InfiniteCardinal, InfStepRange, AbstractInfUnitRange, InfAxes, InfRanges
import LinearAlgebra: matprod, qr, AbstractTriangular, AbstractQ, adjoint, transpose, AdjOrTrans
import LazyArrays: applybroadcaststyle, CachedArray, CachedMatrix, CachedVector, DenseColumnMajor, FillLayout, ApplyMatrix, check_mul_axes, LazyArrayStyle,
resizedata!, MemoryLayout,
resizedata!, MemoryLayout, most,
factorize, sub_materialize, LazyLayout, LazyArrayStyle, layout_getindex,
applylayout, ApplyLayout, PaddedLayout, zero!, MulAddStyle,
LazyArray, LazyMatrix, LazyVector, paddeddata
applylayout, ApplyLayout, PaddedLayout, CachedLayout, cacheddata, zero!, MulAddStyle,
LazyArray, LazyMatrix, LazyVector, paddeddata, arguments
import MatrixFactorizations: ul, ul!, _ul, ql, ql!, _ql, QLPackedQ, getL, getR, getU, reflector!, reflectorApply!, QL, QR, QRPackedQ,
QRPackedQLayout, AdjQRPackedQLayout, QLPackedQLayout, AdjQLPackedQLayout, LayoutQ

Expand Down
6 changes: 6 additions & 0 deletions src/banded/infqltoeplitz.jl
Original file line number Diff line number Diff line change
Expand Up @@ -123,6 +123,12 @@ end
mul(A::ProductQ, x::AbstractVector) = _productq_mul(A, x)



mul(Q::ProductQ, X::AbstractMatrix) = ApplyArray(*, Q.Qs...) * X
mul(X::AbstractMatrix, Q::ProductQ) = X * ApplyArray(*, Q.Qs...)



# LQ where Q is a product of orthogonal operations
struct QLProduct{T,QQ<:Tuple,LL} <: Factorization{T}
Qs::QQ
Expand Down
81 changes: 76 additions & 5 deletions src/infql.jl
Original file line number Diff line number Diff line change
Expand Up @@ -52,15 +52,11 @@ function qltail(Z::Number, A::Number, B::Number)

e = sqrt(n^2 - abs2(B))
d = σ*e*Z/n

Q =

ql!([Z A B; 0 d e])
end


ql(A::SymTriPertToeplitz{T}; kwds...) where T = ql_hessenberg!(BandedMatrix(A, (bandwidth(A,1)+bandwidth(A,2),bandwidth(A,2))); kwds...)
ql(A::SymTridiagonal{T}; kwds...) where T = ql_hessenberg!(BandedMatrix(A, (bandwidth(A,1)+bandwidth(A,2),bandwidth(A,2))); kwds...)
ql(A::TriPertToeplitz{T}; kwds...) where T = ql_hessenberg!(BandedMatrix(A, (bandwidth(A,1)+bandwidth(A,2),bandwidth(A,2))); kwds...)
ql_hessenberg(A::InfBandedMatrix{T}; kwds...) where T = ql_hessenberg!(BandedMatrix(A, (bandwidth(A,1)+bandwidth(A,2),bandwidth(A,2))); kwds...)

toeptail(B::BandedMatrix{T}) where T =
Expand Down Expand Up @@ -303,3 +299,78 @@ function materialize!(M::MatLdivVec{<:TriangularLayout{'L','N',BandedColumns{Per
end
b
end

_ql(layout, ::NTuple{2,OneToInf{Int}}, A, args...; kwds...) = error("Not implemented")

_data_tail(::PaddedLayout, a) = paddeddata(a), zero(eltype(a))
_data_tail(::AbstractFillLayout, a) = Vector{eltype(a)}(), getindex_value(a)
_data_tail(::CachedLayout, a) = cacheddata(a), getindex_value(a.array)
function _data_tail(::ApplyLayout{typeof(vcat)}, a)
args = arguments(vcat, a)
dat,tl = _data_tail(last(args))
vcat(most(args)..., dat), tl
end
_data_tail(a) = _data_tail(MemoryLayout(a), a)

function _ql(::SymTridiagonalLayout, ::NTuple{2,OneToInf{Int}}, A, args...; kwds...)
T = eltype(A)
d,d∞ = _data_tail(A.dv)
ev,ev∞ = _data_tail(A.ev)

m = max(length(d), length(ev)+1)
dat = zeros(T, 3, m)
dat[1,2:1+length(ev)] .= ev
dat[1,2+length(ev):end] .= ev∞
dat[2,1:length(d)] .= d
dat[2,1+length(d):end] .= d∞
dat[3,1:length(ev)] .= ev
dat[3,1+length(ev):end] .= ev∞

ql(_BandedMatrix(Hcat(dat, [ev∞,d∞,ev∞] * Ones{T}(1,∞)), ℵ₀, 1, 1), args...; kwds...)
end



# TODO: This should be redesigned as ql(BandedMatrix(A))
# But we need to support dispatch on axes
function _ql(::TridiagonalLayout, ::NTuple{2,OneToInf{Int}}, A, args...; kwds...)
T = eltype(A)
d,d∞ = _data_tail(A.d)
dl,dl∞ = _data_tail(A.dl)
du,du∞ = _data_tail(A.du)

m = max(length(d), length(du)+1, length(dl))
dat = zeros(T, 3, m)
dat[1,2:1+length(du)] .= du
dat[1,2+length(du):end] .= du∞
dat[2,1:length(d)] .= d
dat[2,1+length(d):end] .= d∞
dat[3,1:length(dl)] .= dl
dat[3,1+length(dl):end] .= dl∞

ql(_BandedMatrix(Hcat(dat, [du∞,d∞,dl∞] * Ones{T}(1,∞)), ℵ₀, 1, 1), args...; kwds...)
end


###
# L*Q special case
###

copy(M::Mul{TriangularLayout{'L', 'N', PertToeplitzLayout}, HessenbergQLayout{'L'}}) =
ApplyArray(*, M.A, M.B)

copy(M::Mul{HessenbergQLayout{'L'}, TriangularLayout{'L', 'N', PertToeplitzLayout}}) =
ApplyArray(*, M.A, M.B)


function LazyBandedMatrices._SymTridiagonal(::Tuple{TriangularLayout{'L', 'N', PertToeplitzLayout}, HessenbergQLayout{'L'}}, A)
T = eltype(A)
L,Q = arguments(*, A)
Ldat,L∞ = arguments(hcat, L.data.data)
Qdat, Q∞ = arguments(vcat, Q.q)

m = max(size(Ldat,2)+2, length(Qdat)+1)
dv = [A[k,k] for k=1:m]
ev = [A[k,k+1] for k=1:m-1]
SymTridiagonal([dv; Fill(dv[end],∞)], [ev; Fill(ev[end],∞)])
end
14 changes: 9 additions & 5 deletions src/infqr.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,9 @@ end

function AdaptiveQRData(::Union{SymmetricLayout{<:AbstractBandedLayout},AbstractBandedLayout}, A::AbstractMatrix{T}) where T
l,u = bandwidths(A)
data = BandedMatrix{T}(undef,(2l+u+1,0),(l,l+u)) # pad super
AdaptiveQRData(CachedArray(data,A), Vector{T}(), 0)
FT = float(T)
data = BandedMatrix{FT}(undef,(2l+u+1,0),(l,l+u)) # pad super
AdaptiveQRData(CachedArray(data,A), Vector{FT}(), 0)
end

function AdaptiveQRData(::AbstractAlmostBandedLayout, A::AbstractMatrix{T}) where T
Expand Down Expand Up @@ -123,8 +124,8 @@ function getindex(F::AdaptiveQRFactors, k::Int, j::Int)
F.data.data[k,j]
end

colsupport(F::QRPackedQ{<:Any,<:AdaptiveQRFactors}, j) = colsupport(F.factors, j)
rowsupport(F::QRPackedQ{<:Any,<:AdaptiveQRFactors}, j) = rowsupport(F.factors, j)
colsupport(F::QRPackedQ{<:Any,<:AdaptiveQRFactors}, j) = 1:last(colsupport(F.factors, j))
rowsupport(F::QRPackedQ{<:Any,<:AdaptiveQRFactors}, j) = first(rowsupport(F.factors, j)):size(F,2)

blockcolsupport(F::QRPackedQ{<:Any,<:AdaptiveQRFactors}, j) = blockcolsupport(F.factors, j)

Expand Down Expand Up @@ -349,4 +350,7 @@ ldiv!(F::QR{<:Any,<:AdaptiveQRFactors}, b::LayoutVector; kwds...) = ldiv!(F.R, l


factorize(A::BandedMatrix{<:Any,<:Any,<:OneToInf}) = qr(A)
qr(A::SymTridiagonal{T,<:AbstractFill{T,1,Tuple{OneToInf{Int}}}}) where T = adaptiveqr(A)
qr(A::SymTridiagonal{T,<:AbstractFill{T,1,Tuple{OneToInf{Int}}}}) where T = adaptiveqr(A)

copy(M::Mul{<:QRPackedQLayout{<:AdaptiveLayout}}) = ApplyArray(*, M.A, M.B)
copy(M::Mul{<:Any,<:QRPackedQLayout{<:AdaptiveLayout}}) = ApplyArray(*, M.A, M.B)
18 changes: 18 additions & 0 deletions test/test_infql.jl
Original file line number Diff line number Diff line change
Expand Up @@ -179,4 +179,22 @@ import BandedMatrices: _BandedMatrix
@test Q[1:10,1:10] ≈ Qn[1:10,1:10] * diagm(0 => [1; -Ones(9)] )
@test (Q'A)[1:10,1:10] ≈ diagm(0 => [1; -Ones(9)] ) * Ln[1:10,1:10] ≈ L[1:10,1:10]
end

@testset "Tridiagonal QL" begin
for A in (LinearAlgebra.SymTridiagonal([[1,2]; Fill(3,∞)], [[1, 2]; Fill(1,∞)]),
LinearAlgebra.Tridiagonal([[1, 2]; Fill(1,∞)], [[1,2]; Fill(3,∞)], [[1, 2]; Fill(1,∞)]),
LazyBandedMatrices.SymTridiagonal([[1,2]; Fill(3,∞)], [[1, 2]; Zeros(∞)]),
LazyBandedMatrices.SymTridiagonal([[1,2]; Fill(3,∞)], [[1, 2]; zeros(∞)]),
LazyBandedMatrices.SymTridiagonal([[1,2]; fill(3,∞)], [[1, 2]; zeros(∞)]))
@test abs.(ql(A).L[1:10,1:10]) ≈ abs.(ql(A[1:1000,1:1000]).L[1:10,1:10])
end

A = LazyBandedMatrices.SymTridiagonal([[1,2]; Fill(3,∞)], [[1, 2]; Fill(1,∞)])
Q,L = ql(A)
@test (Q*L)[1:10,1:10] ≈ A[1:10,1:10]

@test (L*Q)[1:10,1:10] ≈ LazyBandedMatrices.SymTridiagonal(L*Q)[1:10,1:10]
end

@test_throws ErrorException ql(zeros(∞,∞))
end
17 changes: 12 additions & 5 deletions test/test_infqr.jl
Original file line number Diff line number Diff line change
Expand Up @@ -43,23 +43,23 @@ import SemiseparableMatrices: AlmostBandedLayout, VcatAlmostBandedLayout

@testset "col/rowsupport" begin
A = _BandedMatrix(Vcat(Ones(1,∞), (1:∞)', Ones(1,∞)), ℵ₀, 1, 1)
F = qr(A);
F = qr(A)
@test MemoryLayout(typeof(F.factors)) isa AdaptiveLayout{BandedColumns{DenseColumnMajor}}
@test bandwidths(F.factors) == (1,2)
@test colsupport(F.factors,1) == 1:2
@test colsupport(F.factors,5) == 3:6
@test rowsupport(F.factors,1) == 1:3
@test rowsupport(F.factors,5) == 4:7
Q,R = F;
Q,R = F
@test MemoryLayout(typeof(R)) isa TriangularLayout
@test colsupport(R,1) == 1:1
@test colsupport(R,5) == 3:5
@test rowsupport(R,1) == 1:3
@test rowsupport(R,5) == 5:7
@test colsupport(Q,1) == 1:2
@test colsupport(Q,5) == 3:6
@test rowsupport(Q,1) == 1:3
@test rowsupport(Q,5) == 4:7
@test colsupport(Q,5) == 1:6
@test rowsupport(Q,1) == 1:
@test rowsupport(Q,5) == 4:
end

@testset "Qmul" begin
Expand Down Expand Up @@ -296,4 +296,11 @@ import SemiseparableMatrices: AlmostBandedLayout, VcatAlmostBandedLayout
b = [1; 2; 3; zeros(∞)]
@test (qr(A) \ b) ≈ (ul(A) \ b)
end

@testset "SymTridiagonal QR" begin
A = LazyBandedMatrices.SymTridiagonal([[1,2]; Fill(3,∞)], [[1, 2]; Fill(1,∞)])
Q,R = qr(A)
@test (Q*R)[1:10,1:10] ≈ A[1:10,1:10]
@test (R*Q)[1:10,1:10] ≈ LazyBandedMatrices.SymTridiagonal((R*Q)[1:10,1:10])
end
end