Skip to content

Commit 995138d

Browse files
committed
Update Version and Readme
1 parent 232326d commit 995138d

File tree

2 files changed

+1
-32
lines changed

2 files changed

+1
-32
lines changed

Project.toml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
name = "IntelVectorMath"
22
uuid = "c8ce9da6-5d36-5c03-b118-5a70151be7bc"
3-
version = "0.3.0"
3+
version = "0.3.1"
44

55
[deps]
66
BinaryProvider = "b99e7846-7c00-51b0-8f62-c81ae34c0232"

README.md

Lines changed: 0 additions & 31 deletions
Original file line numberDiff line numberDiff line change
@@ -53,37 +53,6 @@ julia> @btime IVM.sin!(b, a); # in-place version
5353
20.008 μs (0 allocations: 0 bytes)
5454
```
5555

56-
Most Julia functions do not automatically apply to all elements of an array, thus `sin(a)` gives a MethodError. If you would like to extend the Base function with this functionality, you can add methods to them with the `@overload` macro:
57-
```julia
58-
julia> @overload sin cos tan;
59-
60-
julia> @btime sin($a);
61-
20.944 μs (2 allocations: 78.20 KiB)
62-
63-
julia> ans sin.(a)
64-
true
65-
```
66-
Calling `sin` on an array now calls the a IntelVectorMath function, while its action on scalars is unchanged.
67-
68-
#### Note:
69-
70-
Some Julia functions like `exp` and `log` do operate on matrices, and refer to the [matrix exponential](https://en.wikipedia.org/wiki/Matrix_exponential) and logarithm. Using `@overload exp` will overwrite this behaviour with element-wise exponentiation/ logarithm.
71-
```julia
72-
julia> exp(ones(2,2))
73-
2×2 Array{Float64,2}:
74-
4.19453 3.19453
75-
3.19453 4.19453
76-
77-
julia> IVM.exp(ones(2,2))
78-
2×2 Array{Float64,2}:
79-
2.71828 2.71828
80-
2.71828 2.71828
81-
82-
julia> ans == exp.(ones(2,2))
83-
true
84-
```
85-
If your code, or any code you call, uses matrix exponentiation, then `@overload exp` may silently lead to incorrect results. This caution applies to all trigonometric functions, too, since they have matrix forms defined by matrix exponentials.
86-
8756
### Accuracy
8857

8958
By default, IntelVectorMath uses `VML_HA` mode, which corresponds to an accuracy of

0 commit comments

Comments
 (0)