Skip to content

Commit 5cadbc7

Browse files
committed
Remove some of the unicode in the README. Hopefully fixes #62.
1 parent 287ff4c commit 5cadbc7

File tree

1 file changed

+20
-22
lines changed

1 file changed

+20
-22
lines changed

README.md

Lines changed: 20 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -132,24 +132,24 @@ Note that 14 and 12 nm Ryzen chips can only do 1 full width `fma` per clock cycl
132132

133133
We can also vectorize fancier loops. A likely familiar example to dive into:
134134
```julia
135-
julia> function mygemm!(𝐂, 𝐀, 𝐁)
136-
@inbounds @fastmath for m 1:size(𝐀,1), n 1:size(𝐁,2)
137-
𝐂ₘₙ = zero(eltype(𝐂))
138-
for k 1:size(𝐀,2)
139-
𝐂ₘₙ += 𝐀[m,k] * 𝐁[k,n]
135+
julia> function mygemm!(C, A, B)
136+
@inbounds @fastmath for m 1:size(A,1), n 1:size(B,2)
137+
Cmn = zero(eltype(C))
138+
for k 1:size(A,2)
139+
Cmn += A[m,k] * B[k,n]
140140
end
141-
𝐂[m,n] = 𝐂ₘₙ
141+
C[m,n] = Cmn
142142
end
143143
end
144144
mygemm! (generic function with 1 method)
145145

146-
julia> function mygemmavx!(𝐂, 𝐀, 𝐁)
147-
@avx for m 1:size(𝐀,1), n 1:size(𝐁,2)
148-
𝐂ₘₙ = zero(eltype(𝐂))
149-
for k 1:size(𝐀,2)
150-
𝐂ₘₙ += 𝐀[m,k] * 𝐁[k,n]
146+
julia> function mygemmavx!(C, A, B)
147+
@avx for m 1:size(A,1), n 1:size(B,2)
148+
Cmn = zero(eltype(C))
149+
for k 1:size(A,2)
150+
Cmn += A[m,k] * B[k,n]
151151
end
152-
𝐂[m,n] = 𝐂ₘₙ
152+
C[m,n] = Cmn
153153
end
154154
end
155155
mygemmavx! (generic function with 1 method)
@@ -276,24 +276,22 @@ BLAS.set_num_threads(1); @show BLAS.vendor()
276276
const MatrixFInt64 = Union{Matrix{Float64}, Matrix{Int}}
277277

278278
function mul_avx!(C::MatrixFInt64, A::MatrixFInt64, B::MatrixFInt64)
279-
z = zero(eltype(C))
280-
@avx for i 1:size(A,1), j 1:size(B,2)
281-
Cᵢⱼ = z
279+
@avx for m 1:size(A,1), n 1:size(B,2)
280+
Cmn = zero(eltype(C))
282281
for k 1:size(A,2)
283-
Cᵢⱼ += A[i,k] * B[k,j]
282+
Cmn += A[m,k] * B[k,n]
284283
end
285-
C[i,j] = Cᵢⱼ
284+
C[m,n] = Cmn
286285
end
287286
end
288287

289288
function mul_add_avx!(C::MatrixFInt64, A::MatrixFInt64, B::MatrixFInt64, factor=1)
290-
z = zero(eltype(C))
291-
@avx for i 1:size(A,1), j 1:size(B,2)
292-
ΔCᵢⱼ = z
289+
@avx for m 1:size(A,1), n 1:size(B,2)
290+
ΔCmn = zero(eltype(C))
293291
for k 1:size(A,2)
294-
ΔCᵢⱼ += A[i,k] * B[k,j]
292+
ΔCmn += A[m,k] * B[k,n]
295293
end
296-
C[i,j] += factor * ΔCᵢⱼ
294+
C[m,n] += factor * ΔCmn
297295
end
298296
end
299297

0 commit comments

Comments
 (0)