Skip to content

Commit 240c8b3

Browse files
authored
Merge pull request #3128 from MicrosoftDocs/master
10/23 AM Publish
2 parents 551f137 + 133ede1 commit 240c8b3

File tree

5,283 files changed

+65237
-64635
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

5,283 files changed

+65237
-64635
lines changed

connected-environment/docfx.json

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -40,11 +40,12 @@
4040
"feedback_product_url": "https://aka.ms/vsce-product-survey",
4141
"breadcrumb_path": "/visualstudio/connected-environment/breadcrumb/toc.json",
4242
"extendBreadcrumb": true,
43-
"ROBOTS": "NOINDEX,NOFOLLOW",
43+
"ROBOTS": "NOINDEX,NOFOLLOW",
4444
"titleSuffix": "Visual Studio Connected Environment"
4545
},
4646
"fileMetadata": {},
4747
"template": [],
48-
"dest": "connected-environment"
48+
"dest": "connected-environment",
49+
"markdownEngineName": "markdig"
4950
}
5051
}

docs/ai/create-project-existing.md

Lines changed: 8 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -6,28 +6,27 @@ ms.technology: vs-ai-tools
66
Once you've [installed Visual Studio Tools for AI](installation.md), it's easy to bring existing Python code into a Visual Studio project.
77

88
> [!Important]
9-
>
109
> The process described here does not move or copy the original source files. If you want to work with a copy, duplicate the folder first.
1110
1211
1. Launch Visual Studio and select **File > New > Project**.
1312

14-
1. In the **New Project** dialog, search for "**AI Tools**", select the "**From Existing Python code**" template, give the project a name and location, and select **OK**.
13+
2. In the **New Project** dialog, search for "**AI Tools**", select the "**From Existing Python code**" template, give the project a name and location, and select **OK**.
1514

16-
![New Project from Existing Code, step 1](media/create-project-existing/new-ai-project.png)
15+
![New Project from Existing Code, step 1](media/create-project-existing/new-ai-project.png)
1716

18-
1. In the wizard that appears, set the path to your existing code, set a filter for file types, and specify any search paths that your project requires, then select **OK**. If you don't know what search paths are, leave that field blank.
17+
3. In the wizard that appears, set the path to your existing code, set a filter for file types, and specify any search paths that your project requires, then select **OK**. If you don't know what search paths are, leave that field blank.
1918

20-
![New Project from Existing Code, step 2](media/create-project-existing/azurebatch-newproject.png)
19+
![New Project from Existing Code, step 2](media/create-project-existing/azurebatch-newproject.png)
2120

22-
> If your existing code is part of an Azure Machine Learning project, check the "**Is Azure Machine Learning folder**" to ensure successful conversion of important Azure Machine Learning configuration details like which Experimentation account, which Workspace, the compute contexts to use and more.
21+
If your existing code is part of an Azure Machine Learning project, check the **Is Azure Machine Learning folder** to ensure successful conversion of important Azure Machine Learning configuration details like the Experimentation account, Workspace, which compute contexts to use, and more.
2322

24-
1. To set a startup file, locate the file in Solution Explorer, right-click, and select **Set as Startup File**.
23+
4. To set a startup file, locate the file in **Solution Explorer**, right-click, and select **Set as Startup File**.
2524

26-
1. If desired, run the program by pressing Ctrl+F5 or selecting **Debug > Start Without Debugging**.
25+
5. Run the program by pressing **Ctrl**+**F5** or selecting **Debug > Start Without Debugging**.
2726

2827
> [!div class="nextstepaction"]
2928
> [Tutorial: Working with Python in Visual Studio](../python/tutorial-working-with-python-in-visual-studio-step-00-installation.md)
3029
31-
## See Also
30+
## See also
3231

3332
- [Manually identify an existing Python environment](../python/managing-python-environments-in-visual-studio.md#manually-identify-an-existing-environment)

docs/ai/create-project-gallery.md

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -27,34 +27,34 @@ Once you've [installed Visual Studio Tools for AI](installation.md), it's easy t
2727

2828
![Cluster chooser](media/create-project-gallery/select-cluster.png)
2929

30-
1. Sign in to your Azure Machine Learning subscription by right-clicking the **Azure Machine Learning** node in the Server Explorer then select **Login** and follow the directions.
30+
2. Sign in to your Azure Machine Learning subscription by right-clicking the **Azure Machine Learning** node in the Server Explorer then select **Login** and follow the directions.
3131

3232
![login](media/create-project-gallery/azureml-login.png)
3333

34-
2. Select **AI Tools > Azure Machine Learning Sample Gallery**.
34+
3. Select **AI Tools > Azure Machine Learning Sample Gallery**.
3535

3636
![Sample gallery](media/create-project-gallery/gallery.png)
3737

38-
1. For this Quickstart, select the "**MNIST using TensorFlow**" sample and click **Install**. Provide the following:
38+
4. For this Quickstart, select the "**MNIST using TensorFlow**" sample and click **Install**. Provide the following:
3939

40-
- **Resource Group**: Azure resource group where your metadata will be stored
41-
- **Account**: Azure Machine Learning experimentation Account
42-
- **Workspace**: Azure Machine Learning workspace
43-
- **Project Type**: The machine learning framework. In this case choose **TensorFlow**
44-
- **Add to Solution**: determines whether to add to your current Visual Studio Solution or a create and open a new solution
45-
- **Project Path**: Location to save the code
46-
- **Project Name**: Type **TensorFlowMNIST**
40+
- **Resource Group**: Azure resource group where your metadata will be stored
41+
- **Account**: Azure Machine Learning experimentation Account
42+
- **Workspace**: Azure Machine Learning workspace
43+
- **Project Type**: The machine learning framework. In this case choose **TensorFlow**
44+
- **Add to Solution**: determines whether to add to your current Visual Studio Solution or a create and open a new solution
45+
- **Project Path**: Location to save the code
46+
- **Project Name**: Type **TensorFlowMNIST**
4747

48-
![Resulting project when using the Python Application template](media/create-project-gallery/new-AzureSampleProject.png)
48+
![Resulting project when using the Python Application template](media/create-project-gallery/new-AzureSampleProject.png)
4949

50-
1. Visual Studio creates the project file (a `.pyproj` file on disk) along with other files defined in the sample. With the "MNIST" template, the project contains several files.
50+
5. Visual Studio creates the project file (a `.pyproj` file on disk) along with other files defined in the sample. With the "MNIST" template, the project contains several files.
5151

5252
![mnist](media/create-project-gallery/azml-mnist.png)
5353

54-
1. Submit the job to Azure Machine Learning.
54+
6. Submit the job to Azure Machine Learning.
5555

5656
![mnist](media/create-project-gallery/submit-azml.png)
5757

58-
1. Run in a Docker container or on your local machine
58+
7. Run in a Docker container or on your local machine
5959

6060
![mnist](media/create-project-gallery/azml-local.png)

docs/ai/create-project-repo.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -30,19 +30,19 @@ Once you've [installed Visual Studio Tools for AI](installation.md), you can eas
3030

3131
8. In Solution Explorer, expand the `TensorFlow Examples> MNIST` node, right-click `convolutional.py`, and select **Set as Startup File**. This step tells Visual Studio which file it should use when running the project.
3232

33-
10. Press Ctrl+F5 or select **Debug > Start Without Debugging** to run the program. If you see an `, re-check the working directory setting in the previous step.
33+
9. Press **Ctrl**+**F5** or select **Debug > Start Without Debugging** to run the program. If you see an `, re-check the working directory setting in the previous step.
3434

35-
36-
11. When the program runs successfully, you'll see it start to download your training and test dataset, then train the model and output your error rate. You want error rate to decrease over time
35+
10. When the program runs successfully, you'll see it start to download your training and test dataset, then train the model and output your error rate. You want error rate to decrease over time
3736

3837
![First output from the Python MNIST program](media/create-project-repo/tensorflow-mnist-running.png)
3938

40-
> If you are using Anaconda and get an error about missing numpy, you may need to [change your Python environment to use Anaconda](../python/selecting-a-python-environment-for-a-project.md).
39+
> [!NOTE]
40+
> If you're using Anaconda and get an error about missing numpy, you may need to [change your Python environment to use Anaconda](../python/selecting-a-python-environment-for-a-project.md).
4141
4242
11. You can visualize the progress with TensorBoard. Right click your project and click **Run TensorBoard** then select the directory of your output TensorBoard logs.
4343

44-
![run tensorboard](media/create-project-repo/run-tensorboard.png)
44+
![run tensorboard](media/create-project-repo/run-tensorboard.png)
4545

46-
11. Notice the error decreasing overtime, which means the quality is improving
46+
12. Notice the error decreasing overtime, which means the quality is improving
4747

48-
![run tensorboard](media/create-project-repo/tensorboard.png)
48+
![run tensorboard](media/create-project-repo/tensorboard.png)

docs/ai/create-project.md

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -7,24 +7,24 @@ Once you've [installed Visual Studio Tools for AI](installation.md), it's easy t
77

88
1. Launch Visual Studio.
99

10-
1. Select **File > New > Project** (Ctrl+Shift+N). In the **New Project** dialog, search for "**AI Tools**", and select the template you want. Note that selecting a template displays a short description of what the template provides.
10+
2. Select **File > New > Project** (Ctrl+Shift+N). In the **New Project** dialog, search for "**AI Tools**", and select the template you want. Note that selecting a template displays a short description of what the template provides.
1111

1212
![VS2017 New Project dialog with Python template](media/create-project/new-ai-project.png)
1313

14-
1. For this Quickstart, select the "**TensorFlow Application**" template, give the project a name (such as "MNIST") and location, and select **OK**.
14+
3. For this Quickstart, select the "**TensorFlow Application**" template, give the project a name (such as "MNIST") and location, and select **OK**.
1515

16-
1. Visual Studio creates the project file (a `.pyproj` file on disk) along with any other files as described by the template. With the "TensorFlow Application" template, the project contains one file named the same as your project. The file is open in the Visual Studio editor by default.
16+
4. Visual Studio creates the project file (a `.pyproj` file on disk) along with any other files as described by the template. With the "TensorFlow Application" template, the project contains one file named the same as your project. The file is open in the Visual Studio editor by default.
1717

1818
![Resulting project when using the Python Application template](media/create-project/new-tensorflowapp.png)
1919

20-
1. Notice the code already imports several libraries including TensorFlow, numpy, sys and os. Additionally it starts your application ready with some input arguments to easily enable switching the location of input training data, output models and log files. These params are useful when you submit your jobs to multiple compute contexts (ie different directory on your local dev box than on an Azure File Share).
20+
5. Notice the code already imports several libraries including TensorFlow, numpy, sys and os. Additionally it starts your application ready with some input arguments to easily enable switching the location of input training data, output models and log files. These params are useful when you submit your jobs to multiple compute contexts (ie different directory on your local dev box than on an Azure File Share).
2121

22-
1. Your project also has some properties created to make it easy to debug your app by automatically passing commandline arguments to these input parameters. **Right click** your project then select **Properties**
22+
6. Your project also has some properties created to make it easy to debug your app by automatically passing commandline arguments to these input parameters. **Right click** your project then select **Properties**
2323

2424
![Properties](media/create-project/project-properties.png)
2525

26-
1. Click the **Debug** tab to see the Script Arguments automatically added. you may change them as needed to where your input data is located and where you would like your output stored.
26+
7. Click the **Debug** tab to see the Script Arguments automatically added. you may change them as needed to where your input data is located and where you would like your output stored.
2727

28-
![Properties](media/create-project//project-properties_1.png)
28+
![Properties](media/create-project//project-properties_1.png)
2929

30-
1. Run the program by pressing Ctrl+F5 or selecting **Debug > Start Without Debugging** on the menu. The results are displayed in a console window.
30+
8. Run the program by pressing Ctrl+F5 or selecting **Debug > Start Without Debugging** on the menu. The results are displayed in a console window.

docs/ai/job-details.md

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2,12 +2,13 @@
22
ms.technology: vs-ai-tools
33
---
44
# View recent job performance and details
5+
56
Once the jobs are submitted, you can view the list of jobs to see their status, duration and more.
67

78
1. In the **Server Explorer**, expand the specific compute context.
8-
1. Double-click **Jobs**.
9-
1. You will see the list of jobs submitted to that compute context.
10-
1. Select a specific **Job** in the list to view details.
9+
2. Double-click **Jobs**.
10+
3. You will see the list of jobs submitted to that compute context.
11+
4. Select a specific **Job** in the list to view details.
1112

1213
![monitor jobs](media/job-details/monitor-jobs.png)
1314

docs/ai/manage-storage.md

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -6,15 +6,17 @@ ms.technology: vs-ai-tools
66
You can browse all storage on the remote machine or Azure file share to enable uploading data or downloading models and logs. Or, if you want to access logs and job outputs for a specific job, you can do that as well in the job browser.
77

88
## To access all data on the remote machine or file share
9+
910
1. Open the **Server Explorer**.
1011
2. Expand the remote machine or Batch AI compute context.
1112
3. Right-click **Storage**; then, click **Browse**.
1213

13-
![storage](media/manage-storage/browse-storage.png)
14+
![storage](media/manage-storage/browse-storage.png)
1415

1516
## To access job-specific data on the remote machine or file share
17+
1618
1. Open the [Job History](job-details.md)
1719
2. Select the job.
1820
3. Click **Working Folder** or click **StdOut / Stderr** for quick access to these important log files.
1921

20-
![storage](media/manage-storage/job-workingfolder.png)
22+
![storage](media/manage-storage/job-workingfolder.png)

docs/ai/monitor-gpu.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,13 +2,14 @@
22
ms.technology: vs-ai-tools
33
---
44
# Monitoring GPU Utilization
5+
56
To monitor GPU utilization of remote Linux machines:
67

78
1. In **Server Explorer**, expand **Remote Machines**.
89
2. **Right-click** the remote machine you want to monitor.
910

1011
![gpu heatmap](media/monitor-gpu/gpu-heatmap-0.png)
1112

12-
2. Click **Show Heat Map**.
13+
3. Click **Show Heat Map**.
1314

1415
![gpu heatmap](media/monitor-gpu/heatmap.png)

docs/ai/monitor-tensorboard.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,6 @@ You can visualize your model training progress with TensorBoard.
99

1010
![run tensorboard](media/monitor-tensorboard/run-tensorboard.png)
1111

12-
1. Notice the error decreasing over time, which means the quality is improving.
12+
2. Notice the error decreasing over time, which means the quality is improving.
1313

1414
![run tensorboard](media/monitor-tensorboard/tensorboard.png)

docs/ai/tensorflow-local.md

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -13,10 +13,10 @@ ms.technology: vs-ai-tools
1313
ms.workload:
1414
- "multiple"
1515
---
16-
1716
# Train a TensorFlow model locally
1817

1918
In this quickstart, we will train a TensorFlow model with the [MNIST](http://yann.lecun.com/exdb/mnist/) dataset locally in Visual Studio Tools for AI.
19+
2020
The MNIST database has a training set of 60,000 examples, and a test set of 10,000 examples of handwritten digits.
2121

2222
## Prerequisites
@@ -25,7 +25,8 @@ Before you begin, ensure you have the following installed:
2525

2626
### Google TensorFlow
2727

28-
Run the following command in a terminal.
28+
Run the following command in a terminal:
29+
2930
```cmd
3031
C:\>pip.exe install tensorflow
3132
```
@@ -42,17 +43,17 @@ Download this [GitHub repository](https://github.com/Microsoft/samples-for-ai) c
4243

4344
- Select the **Tensorflow Examples** folder from the samples repository downloaded and open the **TensorflowExamples.sln** file.
4445

45-
![Open project](media/tensorflow-local/open-project.png)
46+
![Open project](media/tensorflow-local/open-project.png)
4647

47-
![Open solution](media/tensorflow-local/open-solution.png)
48+
![Open solution](media/tensorflow-local/open-solution.png)
4849

4950
- Find the MNIST project in **Solution Explorer**, right-click and select **Set as StartUp Project**.
5051

5152
- Click **Start**.
5253

5354
- The output is printed in the console.
5455

55-
![Sample output from console](media/tensorflow-local/console-output.png)
56+
![Sample output from console](media/tensorflow-local/console-output.png)
5657

5758
> [!div class="nextstepaction"]
5859
> [Train a TensorFlow model in the cloud](tensorflow-vm.md)

docs/ai/tensorflow-vm.md

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,6 @@ ms.technology: vs-ai-tools
1313
ms.workload:
1414
- "multiple"
1515
---
16-
1716
# Train a TensorFlow model in the cloud
1817

1918
In this tutorial, we will train a TensorFlow model using the [MNIST dataset](http://yann.lecun.com/exdb/mnist/) on an Azure [Deep Learning](https://docs.microsoft.com/azure/machine-learning/data-science-virtual-machine/deep-learning-dsvm-overview) virtual machine.
@@ -46,9 +45,9 @@ Download this [GitHub repository](https://github.com/Microsoft/samples-for-ai) c
4645

4746
- Select the **Tensorflow Examples** folder from the samples repository downloaded and open the **TensorflowExamples.sln** file.
4847

49-
![Open project](media/tensorflow-local/open-project.png)
48+
![Open project](media/tensorflow-local/open-project.png)
5049

51-
![Open solution](media/tensorflow-local/open-solution.png)
50+
![Open solution](media/tensorflow-local/open-solution.png)
5251

5352
## Add Azure Remote VM
5453

docs/ai/train-model.md

Lines changed: 9 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,6 @@ ms.technology: vs-ai-tools
1313
ms.workload:
1414
- "azure"
1515
---
16-
1716
# Train AI models in Azure Batch AI
1817

1918
Batch AI is a managed service that enables data scientists and AI researchers to train AI and other machine learning models on clusters of Azure virtual machines, including VMs with GPU support. You describe the requirements of your job, where to find the inputs and store the outputs, and Batch AI handles the rest. [Learn more about Azure Batch AI](https://docs.microsoft.com/azure/batch-ai/overview)
@@ -24,7 +23,6 @@ It's integrated with Visual Studio Tools for AI so you can dynamically scale out
2423

2524
![Cluster chooser](media/train-model/select-cluster.png)
2625

27-
2826
2. Expand **AI Tools**. Any Batch AI resources you have will be auto-detected and appear in the Server Explorer.
2927

3028
![Sample gallery](media/train-model/batchai.png)
@@ -40,20 +38,19 @@ It's integrated with Visual Studio Tools for AI so you can dynamically scale out
4038
4139
5. When cloning is complete, click **File > Open Solution > Project / Solution**
4240

43-
![Sample gallery](media/train-model/open-solution.png)
44-
45-
5. Open **samples-for-ai\TensorFlowExamples\TensorFlowExamples.sln** in the directory you cloned the repository
41+
![Sample gallery](media/train-model/open-solution.png)
4642

47-
![Sample gallery](media/train-model/tensorflowexamples.png)
43+
6. Open **samples-for-ai\TensorFlowExamples\TensorFlowExamples.sln** in the directory you cloned the repository
4844

49-
5. Set MNIST project as the **Startup Project **
45+
![Sample gallery](media/train-model/tensorflowexamples.png)
5046

51-
![Sample gallery](media/train-model/mnist-startup.png)
47+
7. Set MNIST project as the **Startup Project **
5248

53-
1. **Right-click **MNIST project, **Submit Job**
49+
![Sample gallery](media/train-model/mnist-startup.png)
5450

55-
![Sample gallery](media/train-model/submit-job.png)
51+
8. <strong>Right-click **MNIST project, **Submit Job</strong>
5652

57-
1. Select your **Azure Batch AI** cluster, then click **Import**. Select the `AzureBatchAI_TF_MNIST.json` file to quickly populate some default values like which Docker Image to use. Then click **Submit**
53+
![Sample gallery](media/train-model/submit-job.png)
54+
9. Select your **Azure Batch AI** cluster, then click **Import**. Select the `AzureBatchAI_TF_MNIST.json` file to quickly populate some default values like which Docker Image to use. Then click **Submit**
5855

59-
![Sample gallery](media/train-model/submit-batch.png)
56+
![Sample gallery](media/train-model/submit-batch.png)

0 commit comments

Comments
 (0)