Skip to content

Commit eb2acbd

Browse files
committed
fix errors that cause build to fail under markdig
1 parent 3e49f4b commit eb2acbd

18 files changed

+360
-358
lines changed

docs/ai/about-ai-tools.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -23,19 +23,19 @@ Get started with deep learning using [Microsoft Cognitive Toolkit (CNTK)](http:/
2323
## Develop, debug and deploy deep learning models and AI solutions
2424
Use the productivity features of Visual Studio to accelerate AI innovation today. Use built-in code editor features like syntax highlighting, IntelliSense and text auto formatting. You can interactively test your deep learning application in your local environment using step-through debugging on local variables and models.
2525

26-
![deep learning ide](media\about\ide.png)
26+
![deep learning ide](media/about/ide.png)
2727

2828
## Get started quickly with the Azure Machine Learning Sample Gallery
2929
Visual Studio Tools for AI is integrated with Azure Machine Learning to make it easy to browse through a gallery of sample experiments using CNTK, TensorFlow, MMLSpark and more.
3030

31-
![sample explorer](media\about\gallery.png)
31+
![sample explorer](media/about/gallery.png)
3232

3333
[Learn more about creating projects from the sample gallery](create-project-gallery.md)
3434

3535
## Scale out deep learning model training and/or inferencing to the cloud
3636
This extension makes it easy to train models on your local computer or you can submit jobs to the cloud by using our integration with Azure Machine Learning. You can submit jobs to different compute targets like Spark clusters, Azure GPU virtual machines and more
3737

38-
![submit job](media\about\submitjobs.png)
38+
![submit job](media/about/submitjobs.png)
3939

4040
[Learn more about training models in the cloud](tensorflow-vm.md)
4141

docs/ai/create-project-existing.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -13,11 +13,11 @@ Once you've [installed Visual Studio Tools for AI](installation.md), it's easy t
1313

1414
1. In the **New Project** dialog, search for "**AI Tools**", select the "**From Existing Python code**" template, give the project a name and location, and select **OK**.
1515

16-
![New Project from Existing Code, step 1](media\create-project-existing\new-ai-project.png)
16+
![New Project from Existing Code, step 1](media/create-project-existing/new-ai-project.png)
1717

1818
1. In the wizard that appears, set the path to your existing code, set a filter for file types, and specify any search paths that your project requires, then select **OK**. If you don't know what search paths are, leave that field blank.
1919

20-
![New Project from Existing Code, step 2](media\create-project-existing\azurebatch-newproject.png)
20+
![New Project from Existing Code, step 2](media/create-project-existing/azurebatch-newproject.png)
2121

2222
> If your existing code is part of an Azure Machine Learning project, check the "**Is Azure Machine Learning folder**" to ensure successful conversion of important Azure Machine Learning configuration details like which Experimentation account, which Workspace, the compute contexts to use and more.
2323

docs/ai/create-project-gallery.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -25,15 +25,15 @@ Once you've [installed Visual Studio Tools for AI](installation.md), it's easy t
2525
2626
1. Launch Visual Studio. Open the **Server Explorer** by opening the **AI Tools** menu and choosing **Select Cluster**
2727

28-
![Cluster chooser](media\create-project-gallery\select-cluster.png)
28+
![Cluster chooser](media/create-project-gallery/select-cluster.png)
2929

3030
1. Sign in to your Azure Machine Learning subscription by right-clicking the **Azure Machine Learning** node in the Server Explorer then select **Login** and follow the directions.
3131

32-
![login](media\create-project-gallery\azureml-login.png)
32+
![login](media/create-project-gallery/azureml-login.png)
3333

3434
2. Select **AI Tools > Azure Machine Learning Sample Gallery**.
3535

36-
![Sample gallery](media\create-project-gallery\gallery.png)
36+
![Sample gallery](media/create-project-gallery/gallery.png)
3737

3838
1. For this Quickstart, select the "**MNIST using TensorFlow**" sample and click **Install**. Provide the following:
3939

@@ -49,12 +49,12 @@ Once you've [installed Visual Studio Tools for AI](installation.md), it's easy t
4949

5050
1. Visual Studio creates the project file (a `.pyproj` file on disk) along with other files defined in the sample. With the "MNIST" template, the project contains several files.
5151

52-
![mnist](media\create-project-gallery\azml-mnist.png)
52+
![mnist](media/create-project-gallery/azml-mnist.png)
5353

5454
1. Submit the job to Azure Machine Learning.
5555

56-
![mnist](media\create-project-gallery\submit-azml.png)
56+
![mnist](media/create-project-gallery/submit-azml.png)
5757

5858
1. Run in a Docker container or on your local machine
5959

60-
![mnist](media\create-project-gallery\azml-local.png)
60+
![mnist](media/create-project-gallery/azml-local.png)

docs/ai/create-project-repo.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -7,13 +7,13 @@ Once you've [installed Visual Studio Tools for AI](installation.md), you can eas
77

88
1. To connect to GitHub repositories, run the Visual Studio installer, select **Modify**, and select the **Individual components** tab. Scroll down to the **Code tools** section, select **GitHub extension for Visual Studio**, and select **Modify**.
99

10-
![Selecting the GitHub extension in the Visual Studio installer](media\create-project-repo\installation-github-extension.png)
10+
![Selecting the GitHub extension in the Visual Studio installer](media/create-project-repo/installation-github-extension.png)
1111

1212
2. Launch Visual Studio.
1313

1414
3. Select **View > Team Explorer...** to open the **Team Explorer** window in which you can connect to GitHub or Azure DevOps, or clone a repository.
1515

16-
![Team explorer window showing Azure DevOps, GitHub, and cloning a repository](media\create-project-repo\team-explorer.png)
16+
![Team explorer window showing Azure DevOps, GitHub, and cloning a repository](media/create-project-repo/team-explorer.png)
1717

1818
4. In the URL field under **Local Git Repositories**, enter `https://github.com/Microsoft/samples-for-ai`, enter a folder for the cloned files, and select **Clone**.
1919

@@ -22,7 +22,7 @@ Once you've [installed Visual Studio Tools for AI](installation.md), you can eas
2222
2323
5. When cloning is complete, double-click the repository folder at the bottom of Team Explorer to navigate to the repository dashboard. Under **Solutions**, select **New...**.
2424

25-
![Team explorer window, creating a new project from a clone](media\create-project-repo\team-explorer-new-project.png)
25+
![Team explorer window, creating a new project from a clone](media/create-project-repo/team-explorer-new-project.png)
2626

2727
6. In the **New Project** dialog that appears, select "**From Existing Python Code**", specify a name for the project, set **Location** to the same folder as the repository, and select **OK**. In the wizard that appears, select **Finish**.
2828

@@ -35,14 +35,14 @@ Once you've [installed Visual Studio Tools for AI](installation.md), you can eas
3535

3636
11. When the program runs successfully, you'll see it start to download your training and test dataset, then train the model and output your error rate. You want error rate to decrease over time
3737

38-
![First output from the Python MNIST program](media\create-project-repo\tensorflow-mnist-running.png)
38+
![First output from the Python MNIST program](media/create-project-repo/tensorflow-mnist-running.png)
3939

4040
> If you are using Anaconda and get an error about missing numpy, you may need to [change your Python environment to use Anaconda](../python/selecting-a-python-environment-for-a-project.md).
4141
4242
11. You can visualize the progress with TensorBoard. Right click your project and click **Run TensorBoard** then select the directory of your output TensorBoard logs.
4343

44-
![run tensorboard](media\create-project-repo\run-tensorboard.png)
44+
![run tensorboard](media/create-project-repo/run-tensorboard.png)
4545

4646
11. Notice the error decreasing overtime, which means the quality is improving
4747

48-
![run tensorboard](media\create-project-repo\tensorboard.png)
48+
![run tensorboard](media/create-project-repo/tensorboard.png)

docs/ai/create-project.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -9,22 +9,22 @@ Once you've [installed Visual Studio Tools for AI](installation.md), it's easy t
99

1010
1. Select **File > New > Project** (Ctrl+Shift+N). In the **New Project** dialog, search for "**AI Tools**", and select the template you want. Note that selecting a template displays a short description of what the template provides.
1111

12-
![VS2017 New Project dialog with Python template](media\create-project\new-ai-project.png)
12+
![VS2017 New Project dialog with Python template](media/create-project/new-ai-project.png)
1313

1414
1. For this Quickstart, select the "**TensorFlow Application**" template, give the project a name (such as "MNIST") and location, and select **OK**.
1515

1616
1. Visual Studio creates the project file (a `.pyproj` file on disk) along with any other files as described by the template. With the "TensorFlow Application" template, the project contains one file named the same as your project. The file is open in the Visual Studio editor by default.
1717

18-
![Resulting project when using the Python Application template](media\create-project\new-tensorflowapp.png)
18+
![Resulting project when using the Python Application template](media/create-project/new-tensorflowapp.png)
1919

2020
1. Notice the code already imports several libraries including TensorFlow, numpy, sys and os. Additionally it starts your application ready with some input arguments to easily enable switching the location of input training data, output models and log files. These params are useful when you submit your jobs to multiple compute contexts (ie different directory on your local dev box than on an Azure File Share).
2121

2222
1. Your project also has some properties created to make it easy to debug your app by automatically passing commandline arguments to these input parameters. **Right click** your project then select **Properties**
2323

24-
![Properties](media\create-project\project-properties.png)
24+
![Properties](media/create-project/project-properties.png)
2525

2626
1. Click the **Debug** tab to see the Script Arguments automatically added. you may change them as needed to where your input data is located and where you would like your output stored.
2727

28-
![Properties](media\create-project\/project-properties_1.png)
28+
![Properties](media/create-project//project-properties_1.png)
2929

3030
1. Run the program by pressing Ctrl+F5 or selecting **Debug > Start Without Debugging** on the menu. The results are displayed in a console window.

docs/ai/installation.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@ You can download the tools from the [Visual Studio Marketplace](http://aka.ms/vs
2525

2626
1. Select **Tools** > **Extensions and Updates**.
2727

28-
![Extensions and Updates menu in Visual Studio](media\installation\extensions.png)
28+
![Extensions and Updates menu in Visual Studio](media/installation/extensions.png)
2929

3030
2. In the **Extensions and Updates** dialog box, select **Online** on the left-hand side.
3131
3. In the search box in the upper right-hand corner, type or enter "tools for ai".
@@ -53,7 +53,7 @@ To install CUDA
5353
- Make sure to install the CUDA runtime libraries, and then add CUDA binary path to the %PATH% or $Path environment variable.
5454
- On Windows, this path is "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin" by default.
5555

56-
![Install CUDA on Windows](media\installation\install_cuda_win.png)
56+
![Install CUDA on Windows](media/installation/install_cuda_win.png)
5757

5858
### cuDNN
5959

@@ -79,7 +79,7 @@ Python has been the primary programming language for deep learning applications.
7979

8080
Deep learning frameworks rely on pip for their own installation.
8181

82-
![Install Python on Windows](media\installation\install_python_win.png)
82+
![Install Python on Windows](media/installation/install_python_win.png)
8383

8484
Then, we need to verify whether Python 3.5 is installed correctly, and upgrade pip to the latest version by executing the following commands in a terminal:
8585

docs/ai/job-details.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,6 @@ Once the jobs are submitted, you can view the list of jobs to see their status,
99
1. You will see the list of jobs submitted to that compute context.
1010
1. Select a specific **Job** in the list to view details.
1111

12-
![monitor jobs](media\job-details\monitor-jobs.png)
12+
![monitor jobs](media/job-details/monitor-jobs.png)
1313

1414
> Job history submitted to Linux VMs is stored on the VM in the /tmp directory. Therefore, whenever it is rebooted the job history is cleared. For a permanent record of your job history, please configure your VM as a compute context in Azure Machine learning, then Submit Job to Azure Machine Learning (selecting your VM as the compute context).

docs/ai/manage-storage.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -10,11 +10,11 @@ You can browse all storage on the remote machine or Azure file share to enable u
1010
2. Expand the remote machine or Batch AI compute context.
1111
3. Right-click **Storage**; then, click **Browse**.
1212

13-
![storage](media\manage-storage\browse-storage.png)
13+
![storage](media/manage-storage/browse-storage.png)
1414

1515
## To access job-specific data on the remote machine or file share
1616
1. Open the [Job History](job-details.md)
1717
2. Select the job.
1818
3. Click **Working Folder** or click **StdOut / Stderr** for quick access to these important log files.
1919

20-
![storage](media\manage-storage\job-workingfolder.png)
20+
![storage](media/manage-storage/job-workingfolder.png)

docs/ai/monitor-gpu.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -7,8 +7,8 @@ To monitor GPU utilization of remote Linux machines:
77
1. In **Server Explorer**, expand **Remote Machines**.
88
2. **Right-click** the remote machine you want to monitor.
99

10-
![gpu heatmap](media\monitor-gpu\gpu-heatmap-0.png)
10+
![gpu heatmap](media/monitor-gpu/gpu-heatmap-0.png)
1111

1212
2. Click **Show Heat Map**.
1313

14-
![gpu heatmap](media\monitor-gpu\heatmap.png)
14+
![gpu heatmap](media/monitor-gpu/heatmap.png)

docs/ai/monitor-tensorboard.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -7,8 +7,8 @@ You can visualize your model training progress with TensorBoard.
77

88
1. Right-click your project and click **Run TensorBoard**; then, select the directory of your output TensorBoard logs.
99

10-
![run tensorboard](media\monitor-tensorboard\run-tensorboard.png)
10+
![run tensorboard](media/monitor-tensorboard/run-tensorboard.png)
1111

1212
1. Notice the error decreasing over time, which means the quality is improving.
1313

14-
![run tensorboard](media\monitor-tensorboard\tensorboard.png)
14+
![run tensorboard](media/monitor-tensorboard/tensorboard.png)

docs/ai/tensorflow-local.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -42,17 +42,17 @@ Download this [GitHub repository](https://github.com/Microsoft/samples-for-ai) c
4242

4343
- Select the **Tensorflow Examples** folder from the samples repository downloaded and open the **TensorflowExamples.sln** file.
4444

45-
![Open project](media\tensorflow-local\open-project.png)
45+
![Open project](media/tensorflow-local/open-project.png)
4646

47-
![Open solution](media\tensorflow-local\open-solution.png)
47+
![Open solution](media/tensorflow-local/open-solution.png)
4848

4949
- Find the MNIST project in **Solution Explorer**, right-click and select **Set as StartUp Project**.
5050

5151
- Click **Start**.
5252

5353
- The output is printed in the console.
5454

55-
![Sample output from console](media\tensorflow-local\console-output.png)
55+
![Sample output from console](media/tensorflow-local/console-output.png)
5656

5757
> [!div class="nextstepaction"]
5858
> [Train a TensorFlow model in the cloud](tensorflow-vm.md)

docs/ai/tensorflow-vm.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -46,20 +46,20 @@ Download this [GitHub repository](https://github.com/Microsoft/samples-for-ai) c
4646

4747
- Select the **Tensorflow Examples** folder from the samples repository downloaded and open the **TensorflowExamples.sln** file.
4848

49-
![Open project](media\tensorflow-local\open-project.png)
49+
![Open project](media/tensorflow-local/open-project.png)
5050

51-
![Open solution](media\tensorflow-local\open-solution.png)
51+
![Open solution](media/tensorflow-local/open-solution.png)
5252

5353
## Add Azure Remote VM
5454

5555
In Server Explorer, right click the **Remote Machines** node under the AI Tools node and select "Add…". Enter the Remote Machine display name, IP host, SSH port, user name, and password/key file.
5656

57-
![Add a new remote machine](media\tensorflow-vm\add-remote-vm.png)
57+
![Add a new remote machine](media/tensorflow-vm/add-remote-vm.png)
5858

5959
## Submit job to Azure VM
6060
Right-click on MNIST project in **Solution Explorer** and select **Submit Job**.
6161

62-
![Job submission to a remote machine](media\tensorflow-vm\job-submission.png)
62+
![Job submission to a remote machine](media/tensorflow-vm/job-submission.png)
6363

6464
In the submission window:
6565

@@ -72,7 +72,7 @@ In the submission window:
7272
## Check status of job
7373
To see status and details of jobs: expand the virtual machine you submitted the job to in the **Server Explorer**. Double-click on **Jobs**.
7474

75-
![Job browser](media\tensorflow-vm\job-browser.png)
75+
![Job browser](media/tensorflow-vm/job-browser.png)
7676

7777
## Clean up resources
7878

docs/ai/train-model.md

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -22,16 +22,16 @@ It's integrated with Visual Studio Tools for AI so you can dynamically scale out
2222

2323
1. Launch Visual Studio. Open the **Server Explorer** by opening the **AI Tools** menu and choosing **Select Cluster**
2424

25-
![Cluster chooser](media\train-model\select-cluster.png)
25+
![Cluster chooser](media/train-model/select-cluster.png)
2626

2727

2828
2. Expand **AI Tools**. Any Batch AI resources you have will be auto-detected and appear in the Server Explorer.
2929

30-
![Sample gallery](media\train-model\batchai.png)
30+
![Sample gallery](media/train-model/batchai.png)
3131

3232
3. Select **View > Team Explorer...** to open the **Team Explorer** window in which you can connect to GitHub or Azure DevOps, or clone a repository.
3333

34-
![Team explorer window showing Azure DevOps, GitHub, and cloning a repository](media\train-model\team-explorer.png)
34+
![Team explorer window showing Azure DevOps, GitHub, and cloning a repository](media/train-model/team-explorer.png)
3535

3636
4. In the URL field under **Local Git Repositories**, enter `https://github.com/Microsoft/samples-for-ai`, enter a folder for the cloned files, and select **Clone**.
3737

@@ -40,20 +40,20 @@ It's integrated with Visual Studio Tools for AI so you can dynamically scale out
4040
4141
5. When cloning is complete, click **File > Open Solution > Project / Solution**
4242

43-
![Sample gallery](media\train-model\open-solution.png)
43+
![Sample gallery](media/train-model/open-solution.png)
4444

4545
5. Open **samples-for-ai\TensorFlowExamples\TensorFlowExamples.sln** in the directory you cloned the repository
4646

47-
![Sample gallery](media\train-model\tensorflowexamples.png)
47+
![Sample gallery](media/train-model/tensorflowexamples.png)
4848

4949
5. Set MNIST project as the **Startup Project **
5050

51-
![Sample gallery](media\train-model\mnist-startup.png)
51+
![Sample gallery](media/train-model/mnist-startup.png)
5252

5353
1. **Right-click **MNIST project, **Submit Job**
5454

55-
![Sample gallery](media\train-model\submit-job.png)
55+
![Sample gallery](media/train-model/submit-job.png)
5656

5757
1. Select your **Azure Batch AI** cluster, then click **Import**. Select the `AzureBatchAI_TF_MNIST.json` file to quickly populate some default values like which Docker Image to use. Then click **Submit**
5858

59-
![Sample gallery](media\train-model\submit-batch.png)
59+
![Sample gallery](media/train-model/submit-batch.png)

0 commit comments

Comments
 (0)