Skip to content

Commit 47190fe

Browse files
am17anNexesenex
authored andcommitted
CUDA: add conv_2d_dw (ggml-org#14265)
* CUDA: add conv_2d_dw * better naming * simplify using template * Review: fix operation ordering in ggml-cuda, use __forceinline__, use more const
1 parent 2d6c4f8 commit 47190fe

File tree

3 files changed

+171
-0
lines changed

3 files changed

+171
-0
lines changed

ggml/src/ggml-cuda/conv2d-dw.cu

Lines changed: 161 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,161 @@
1+
#include "conv2d-dw.cuh"
2+
3+
struct conv_params {
4+
int in_w, in_h;
5+
int out_w, out_h;
6+
int kernel_w, kernel_h;
7+
int stride_x, stride_y;
8+
int padding_x, padding_y;
9+
int dilation_x, dilation_y;
10+
int channels, batches;
11+
};
12+
13+
struct kernel_bounds {
14+
int y_min, y_max;
15+
int x_min, x_max;
16+
};
17+
18+
__device__ __forceinline__ kernel_bounds calculate_kernel_bounds(int out_x, int out_y, const conv_params & params) {
19+
kernel_bounds bounds;
20+
bounds.y_min = max(0, (params.padding_y - out_y * params.stride_y + params.dilation_y - 1) / params.dilation_y);
21+
bounds.y_max =
22+
min(params.kernel_h,
23+
(params.in_h + params.padding_y - out_y * params.stride_y + params.dilation_y - 1) / params.dilation_y);
24+
bounds.x_min = max(0, (params.padding_x - out_x * params.stride_x + params.dilation_x - 1) / params.dilation_x);
25+
bounds.x_max =
26+
min(params.kernel_w,
27+
(params.in_w + params.padding_x - out_x * params.stride_x + params.dilation_x - 1) / params.dilation_x);
28+
return bounds;
29+
}
30+
31+
__device__ __forceinline__ int calculate_input_coord(int out_coord, int kern_coord, int stride, int dilation, int padding) {
32+
return out_coord * stride + kern_coord * dilation - padding;
33+
}
34+
35+
struct whcn_layout {
36+
__device__ static int input_index(int n, int c, int y, int x, const conv_params & params) {
37+
return n * (params.channels * params.in_w * params.in_h) + c * params.in_w * params.in_h + y * params.in_w + x;
38+
}
39+
40+
__device__ static int kernel_index(int c, int ky, int kx, const conv_params & params) {
41+
return c * params.kernel_h * params.kernel_w + ky * params.kernel_w + kx;
42+
}
43+
44+
__device__ static int output_index(int n, int c, int y, int x, const conv_params & params) {
45+
return n * (params.channels * params.out_w * params.out_h) + c * params.out_w * params.out_h +
46+
y * params.out_w + x;
47+
}
48+
49+
__device__ static void unpack_indices(int global_idx, const conv_params & params, int & n, int & c, int & out_y,
50+
int & out_x) {
51+
out_x = global_idx % params.out_w;
52+
out_y = (global_idx / params.out_w) % params.out_h;
53+
c = (global_idx / (params.out_w * params.out_h)) % params.channels;
54+
n = global_idx / (params.out_w * params.out_h * params.channels);
55+
}
56+
};
57+
58+
struct cwhn_layout {
59+
__device__ static int input_index(int n, int c, int y, int x, const conv_params & params) {
60+
return n * (params.channels * params.in_w * params.in_h) + (y * params.in_w + x) * params.channels + c;
61+
}
62+
63+
__device__ static int kernel_index(int c, int ky, int kx, const conv_params & params) {
64+
return (ky * params.kernel_w + kx) * params.channels + c;
65+
}
66+
67+
__device__ static int output_index(int n, int c, int y, int x, const conv_params & params) {
68+
return n * (params.channels * params.out_w * params.out_h) + y * (params.out_w * params.channels) +
69+
x * params.channels + c;
70+
}
71+
72+
__device__ static void unpack_indices(int global_idx, const conv_params & params, int & n, int & c, int & out_y,
73+
int & out_x) {
74+
c = global_idx % params.channels;
75+
out_x = (global_idx / params.channels) % params.out_w;
76+
out_y = (global_idx / (params.channels * params.out_w)) % params.out_h;
77+
n = global_idx / (params.channels * params.out_w * params.out_h);
78+
}
79+
};
80+
81+
template <typename T, typename Layout>
82+
__global__ void conv2d_dw_kernel(const T * __restrict__ input, const T * __restrict__ kernel, T * __restrict__ output,
83+
const int in_w, const int in_h, const int out_w, const int out_h,
84+
const int kernel_w, const int kernel_h, const int stride_x, const int stride_y,
85+
const int padding_x, const int padding_y, const int dilation_x, const int dilation_y,
86+
const int channels, const int batches) {
87+
const int global_idx = blockIdx.x * blockDim.x + threadIdx.x;
88+
const int total_elements = batches * channels * out_h * out_w;
89+
90+
if (global_idx >= total_elements) {
91+
return;
92+
}
93+
94+
conv_params params = { in_w, in_h, out_w, out_h, kernel_w, kernel_h, stride_x,
95+
stride_y, padding_x, padding_y, dilation_x, dilation_y, channels, batches };
96+
97+
int batch_idx, channel_idx, out_y_idx, out_x_idx;
98+
Layout::unpack_indices(global_idx, params, batch_idx, channel_idx, out_y_idx, out_x_idx);
99+
100+
T accumulator = 0;
101+
kernel_bounds bounds = calculate_kernel_bounds(out_x_idx, out_y_idx, params);
102+
103+
for (int kern_y = bounds.y_min; kern_y < bounds.y_max; ++kern_y) {
104+
int in_y_idx = calculate_input_coord(out_y_idx, kern_y, params.stride_y, params.dilation_y, params.padding_y);
105+
106+
for (int kern_x = bounds.x_min; kern_x < bounds.x_max; ++kern_x) {
107+
int in_x_idx = calculate_input_coord(out_x_idx, kern_x, params.stride_x, params.dilation_x, params.padding_x);
108+
109+
const T input_val = input[Layout::input_index(batch_idx, channel_idx, in_y_idx, in_x_idx, params)];
110+
const T kernel_val = kernel[Layout::kernel_index(channel_idx, kern_y, kern_x, params)];
111+
112+
accumulator += input_val * kernel_val;
113+
}
114+
}
115+
116+
output[Layout::output_index(batch_idx, channel_idx, out_y_idx, out_x_idx, params)] = accumulator;
117+
}
118+
119+
void ggml_cuda_op_conv2d_dw(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
120+
const ggml_tensor * kernel = dst->src[0];
121+
const ggml_tensor * input = dst->src[1];
122+
123+
GGML_ASSERT(kernel->type == GGML_TYPE_F32 && input->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
124+
const float * w_d = (const float *) kernel->data;
125+
const float * x_d = (const float *) input->data;
126+
float * y_d = (float *) dst->data;
127+
128+
const int32_t * p = (const int32_t *) dst->op_params;
129+
const int stride_x = p[0];
130+
const int stride_y = p[1];
131+
const int padding_x = p[2];
132+
const int padding_y = p[3];
133+
const int dilation_x = p[4];
134+
const int dilation_y = p[5];
135+
136+
const int in_w = input->ne[0];
137+
const int in_h = input->ne[1];
138+
const int kernel_w = kernel->ne[0];
139+
const int kernel_h = kernel->ne[1];
140+
const int out_w = dst->ne[0];
141+
const int out_h = dst->ne[1];
142+
const int channels = dst->ne[2];
143+
const int batches = dst->ne[3];
144+
145+
cudaStream_t st = ctx.stream();
146+
147+
const int total = batches * channels * out_h * out_w;
148+
const int blocks = (total + CUDA_CONV2D_DW_BLOCK_SIZE - 1) / CUDA_CONV2D_DW_BLOCK_SIZE;
149+
150+
if (ggml_is_contiguous(input)) {
151+
conv2d_dw_kernel<float, whcn_layout><<<blocks, CUDA_CONV2D_DW_BLOCK_SIZE, 0, st>>>(
152+
x_d, w_d, y_d, in_w, in_h, out_w, out_h, kernel_w, kernel_h, stride_x, stride_y, padding_x, padding_y,
153+
dilation_x, dilation_y, channels, batches);
154+
} else if (ggml_is_contiguous_channels(input)) {
155+
conv2d_dw_kernel<float, cwhn_layout><<<blocks, CUDA_CONV2D_DW_BLOCK_SIZE, 0, st>>>(
156+
x_d, w_d, y_d, in_w, in_h, out_w, out_h, kernel_w, kernel_h, stride_x, stride_y, padding_x, padding_y,
157+
dilation_x, dilation_y, channels, batches);
158+
} else {
159+
GGML_ABORT("Unsupported memory layout for conv_2d_dw");
160+
}
161+
}

ggml/src/ggml-cuda/conv2d-dw.cuh

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,5 @@
1+
#pragma once
2+
#include "common.cuh"
3+
4+
#define CUDA_CONV2D_DW_BLOCK_SIZE 256
5+
void ggml_cuda_op_conv2d_dw(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

ggml/src/ggml-cuda/ggml-cuda.cu

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -13,6 +13,7 @@ bool g_mul_mat_q = true;
1313
#include "ggml-cuda/clamp.cuh"
1414
#include "ggml-cuda/concat.cuh"
1515
#include "ggml-cuda/conv-transpose-1d.cuh"
16+
#include "ggml-cuda/conv2d-dw.cuh"
1617
#include "ggml-cuda/convert.cuh"
1718
#include "ggml-cuda/count-equal.cuh"
1819
#include "ggml-cuda/cpy.cuh"
@@ -2604,6 +2605,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
26042605
case GGML_OP_IM2COL:
26052606
ggml_cuda_op_im2col(ctx, dst);
26062607
break;
2608+
case GGML_OP_CONV_2D_DW:
2609+
ggml_cuda_op_conv2d_dw(ctx, dst);
2610+
break;
26072611
case GGML_OP_CONV_TRANSPOSE_1D:
26082612
ggml_cuda_op_conv_transpose_1d(ctx,dst);
26092613
break;
@@ -3551,6 +3555,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
35513555
return op->src[0]->nb[0] == ts && op->src[0]->nb[3] == ne0_012*ts;
35523556
}
35533557
case GGML_OP_IM2COL:
3558+
case GGML_OP_CONV_2D_DW:
35543559
case GGML_OP_POOL_2D:
35553560
case GGML_OP_SUM:
35563561
case GGML_OP_SUM_ROWS:

0 commit comments

Comments
 (0)