Skip to content

Commit f50b136

Browse files
committed
Revert commit "CUDA: batched+noncont MMQ, refactor bs>1 MoE code (ggml-org#13199)"
1 parent 17cbf9f commit f50b136

File tree

8 files changed

+429
-853
lines changed

8 files changed

+429
-853
lines changed

ggml/src/ggml-cuda/getrows.cu

Lines changed: 66 additions & 105 deletions
Original file line numberDiff line numberDiff line change
@@ -33,8 +33,8 @@ static __global__ void k_get_rows(
3333
dfloat2 v;
3434
dequantize_kernel(src0_row, ib, iqs, v);
3535

36-
dst_row[iybs + iqs + 0] = float(v.x);
37-
dst_row[iybs + iqs + y_offset] = float(v.y);
36+
dst_row[iybs + iqs + 0] = v.x;
37+
dst_row[iybs + iqs + y_offset] = v.y;
3838
}
3939

4040
template<typename src0_t, typename dst_t>
@@ -60,7 +60,7 @@ static __global__ void k_get_rows_float(
6060
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
6161
const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03);
6262

63-
dst_row[i00] = float(src0_row[i00]);
63+
dst_row[i00] = src0_row[i00];
6464
}
6565

6666
template<typename grad_t, typename dst_t>
@@ -86,161 +86,122 @@ static __global__ void k_get_rows_back_float(
8686
dst[dst_row*ncols + col] = sum;
8787
}
8888

89-
template<int qk, int qr, dequantize_kernel_t dq, typename dst_t>
90-
static void get_rows_cuda_q(
91-
const void * src0_d, const int32_t * src1_d, dst_t * dst_d,
92-
const int64_t ne00, const size_t nb01, const size_t nb02, const size_t nb03,
93-
const int64_t ne10, const int64_t ne11, const int64_t ne12, const size_t nb10, const size_t nb11, const size_t nb12,
94-
const size_t nb1, const size_t nb2, const size_t nb3,
95-
cudaStream_t stream) {
89+
template<int qk, int qr, dequantize_kernel_t dq>
90+
static void get_rows_cuda(
91+
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
92+
const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
93+
94+
GGML_TENSOR_BINARY_OP_LOCALS
95+
9696
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
9797
const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
9898
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
9999

100100
// strides in elements
101-
// const size_t s0 = nb0 / sizeof(dst_t);
102-
const size_t s1 = nb1 / sizeof(dst_t);
103-
const size_t s2 = nb2 / sizeof(dst_t);
104-
const size_t s3 = nb3 / sizeof(dst_t);
101+
//const size_t s0 = nb0 / ggml_element_size(dst);
102+
const size_t s1 = nb1 / ggml_element_size(dst);
103+
const size_t s2 = nb2 / ggml_element_size(dst);
104+
const size_t s3 = nb3 / ggml_element_size(dst);
105105

106-
const size_t s10 = nb10 / sizeof(int32_t);
107-
const size_t s11 = nb11 / sizeof(int32_t);
108-
const size_t s12 = nb12 / sizeof(int32_t);
109-
// const size_t s13 = nb13 / sizeof(int32_t);
106+
const size_t s10 = nb10 / ggml_element_size(src1);
107+
const size_t s11 = nb11 / ggml_element_size(src1);
108+
const size_t s12 = nb12 / ggml_element_size(src1);
109+
//const size_t s13 = nb13 / ggml_element_size(src1);
110110

111111
GGML_ASSERT(ne00 % 2 == 0);
112112

113113
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
114-
src0_d, src1_d, dst_d,
114+
src0_dd, src1_dd, dst_dd,
115115
ne00, /*ne01, ne02, ne03,*/
116116
/*ne10, ne11,*/ ne12, /*ne13,*/
117117
/* s0,*/ s1, s2, s3,
118118
/* nb00,*/ nb01, nb02, nb03,
119119
s10, s11, s12/*, s13*/);
120+
121+
GGML_UNUSED(dst);
120122
}
121123

122-
template<typename src0_t, typename dst_t>
124+
template<typename src0_t>
123125
static void get_rows_cuda_float(
124-
const src0_t * src0_d, const int32_t * src1_d, dst_t * dst_d,
125-
const int64_t ne00, const size_t nb01, const size_t nb02, const size_t nb03,
126-
const int64_t ne10, const int64_t ne11, const int64_t ne12, const size_t nb10, const size_t nb11, const size_t nb12,
127-
const size_t nb1, const size_t nb2, const size_t nb3,
128-
cudaStream_t stream) {
126+
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
127+
const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
128+
129+
GGML_TENSOR_BINARY_OP_LOCALS
130+
131+
GGML_ASSERT(ne13 == 1);
132+
129133
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
130134
const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
131135
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
132136

133137
// strides in elements
134-
// const size_t s0 = nb0 / sizeof(dst_t);
135-
const size_t s1 = nb1 / sizeof(dst_t);
136-
const size_t s2 = nb2 / sizeof(dst_t);
137-
const size_t s3 = nb3 / sizeof(dst_t);
138+
//const size_t s0 = nb0 / ggml_element_size(dst);
139+
const size_t s1 = nb1 / ggml_element_size(dst);
140+
const size_t s2 = nb2 / ggml_element_size(dst);
141+
const size_t s3 = nb3 / ggml_element_size(dst);
138142

139-
const size_t s10 = nb10 / sizeof(int32_t);
140-
const size_t s11 = nb11 / sizeof(int32_t);
141-
const size_t s12 = nb12 / sizeof(int32_t);
142-
// const size_t s13 = nb13 / sizeof(int32_t);
143+
const size_t s10 = nb10 / ggml_element_size(src1);
144+
const size_t s11 = nb11 / ggml_element_size(src1);
145+
const size_t s12 = nb12 / ggml_element_size(src1);
146+
//const size_t s13 = nb13 / ggml_element_size(src1);
143147

144148
k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
145-
src0_d, src1_d, dst_d,
149+
src0_dd, src1_dd, dst_dd,
146150
ne00, /*ne01, ne02, ne03,*/
147151
/*ne10, ne11,*/ ne12, /*ne13,*/
148152
/* s0,*/ s1, s2, s3,
149153
/* nb00,*/ nb01, nb02, nb03,
150154
s10, s11, s12/*, s13*/);
155+
156+
GGML_UNUSED(dst);
151157
}
152158

153-
template <typename dst_t>
154-
static void ggml_cuda_get_rows_switch_src0_type(
155-
const void * src0_d, const ggml_type src0_type, const int32_t * src1_d, dst_t * dst_d,
156-
const int64_t ne00, const size_t nb01, const size_t nb02, const size_t nb03,
157-
const int64_t ne10, const int64_t ne11, const int64_t ne12, const size_t nb10, const size_t nb11, const size_t nb12,
158-
const size_t nb1, const size_t nb2, const size_t nb3,
159-
cudaStream_t stream) {
160-
switch (src0_type) {
159+
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
160+
const ggml_tensor * src0 = dst->src[0];
161+
const ggml_tensor * src1 = dst->src[1];
162+
163+
const void * src0_d = (const void *) src0->data;
164+
const int32_t * src1_d = (const int32_t *) src1->data;
165+
float * dst_d = (float *) dst->data;
166+
167+
cudaStream_t stream = ctx.stream();
168+
169+
GGML_ASSERT(src1->type == GGML_TYPE_I32);
170+
GGML_ASSERT(dst->type == GGML_TYPE_F32);
171+
172+
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
173+
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
174+
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
175+
176+
switch (src0->type) {
161177
case GGML_TYPE_F16:
162-
get_rows_cuda_float((const half *) src0_d, src1_d, dst_d,
163-
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
178+
get_rows_cuda_float(src0, src1, dst, (const half *) src0_d, src1_d, dst_d, stream);
164179
break;
165180
case GGML_TYPE_F32:
166-
get_rows_cuda_float((const float *) src0_d, src1_d, dst_d,
167-
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
168-
break;
169-
case GGML_TYPE_BF16:
170-
get_rows_cuda_float((const nv_bfloat16 *) src0_d, src1_d, dst_d,
171-
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
181+
get_rows_cuda_float(src0, src1, dst, (const float *) src0_d, src1_d, dst_d, stream);
172182
break;
173183
case GGML_TYPE_Q4_0:
174-
get_rows_cuda_q<QK4_0, QR4_0, dequantize_q4_0>(src0_d, src1_d, dst_d,
175-
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
184+
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
176185
break;
177186
case GGML_TYPE_Q4_1:
178-
get_rows_cuda_q<QK4_1, QR4_1, dequantize_q4_1>(src0_d, src1_d, dst_d,
179-
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
187+
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
180188
break;
181189
case GGML_TYPE_Q5_0:
182-
get_rows_cuda_q<QK5_0, QR5_0, dequantize_q5_0>(src0_d, src1_d, dst_d,
183-
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
190+
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
184191
break;
185192
case GGML_TYPE_Q5_1:
186-
get_rows_cuda_q<QK5_1, QR5_1, dequantize_q5_1>(src0_d, src1_d, dst_d,
187-
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
193+
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
188194
break;
189195
case GGML_TYPE_Q8_0:
190-
get_rows_cuda_q<QK8_0, QR8_0, dequantize_q8_0>(src0_d, src1_d, dst_d,
191-
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
196+
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
192197
break;
193198
default:
194199
// TODO: k-quants
195-
GGML_ABORT("%s: unsupported src0 type: %s\n", __func__, ggml_type_name(src0_type));
200+
GGML_ABORT("%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
196201
break;
197202
}
198203
}
199204

200-
void get_rows_cuda(
201-
const void * src0_d, ggml_type src0_type, const int32_t * src1_d, void * dst_d, ggml_type dst_type,
202-
int64_t ne00, size_t nb01, size_t nb02, size_t nb03,
203-
int64_t ne10, int64_t ne11, int64_t ne12, size_t nb10, size_t nb11, size_t nb12,
204-
size_t nb1, size_t nb2, size_t nb3,
205-
cudaStream_t stream) {
206-
switch (dst_type) {
207-
case GGML_TYPE_F32:
208-
ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (float *) dst_d,
209-
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
210-
break;
211-
case GGML_TYPE_F16:
212-
ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (half *) dst_d,
213-
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
214-
break;
215-
case GGML_TYPE_BF16:
216-
ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (nv_bfloat16 *) dst_d,
217-
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
218-
break;
219-
default:
220-
GGML_ABORT("%s: unsupported dst type: %s\n", __func__, ggml_type_name(dst_type));
221-
break;
222-
}
223-
}
224-
225-
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
226-
const ggml_tensor * src0 = dst->src[0];
227-
const ggml_tensor * src1 = dst->src[1];
228-
229-
cudaStream_t stream = ctx.stream();
230-
231-
GGML_TENSOR_BINARY_OP_LOCALS
232-
233-
GGML_ASSERT(src1->type == GGML_TYPE_I32);
234-
GGML_ASSERT(ne13 == 1);
235-
236-
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
237-
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
238-
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
239-
240-
get_rows_cuda(src0->data, src0->type, (const int32_t *) src1->data, dst->data, dst->type,
241-
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
242-
}
243-
244205
void ggml_cuda_op_get_rows_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
245206
const ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output
246207
const ggml_tensor * src1 = dst->src[1]; // src1 in forward pass

ggml/src/ggml-cuda/getrows.cuh

Lines changed: 0 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -3,13 +3,6 @@
33
#define CUDA_GET_ROWS_BLOCK_SIZE 256
44
#define CUDA_GET_ROWS_BACK_BLOCK_SIZE 256
55

6-
void get_rows_cuda(
7-
const void * src0_d, ggml_type src0_type, const int32_t * src1_d, void * dst_d, ggml_type dst_type,
8-
int64_t ne00, size_t nb01, size_t nb02, size_t nb03,
9-
int64_t ne10, int64_t ne11, int64_t ne12, size_t nb10, size_t nb11, size_t nb12,
10-
size_t nb1, size_t nb2, size_t nb3,
11-
cudaStream_t stream);
12-
136
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
147

158
void ggml_cuda_op_get_rows_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

0 commit comments

Comments
 (0)