|
| 1 | +import argparse |
| 2 | +import torch |
| 3 | +import torch.nn as nn |
| 4 | +import torch.nn.functional as F |
| 5 | +import torch.optim as optim |
| 6 | +from torchvision import datasets, transforms |
| 7 | +from torch.optim.lr_scheduler import StepLR |
| 8 | + |
| 9 | + |
| 10 | +class Net(nn.Module): |
| 11 | + def __init__(self): |
| 12 | + super(Net, self).__init__() |
| 13 | + self.conv1 = nn.Conv2d(1, 32, 3, 1) |
| 14 | + self.conv2 = nn.Conv2d(32, 64, 3, 1) |
| 15 | + self.dropout1 = nn.Dropout(0.25) |
| 16 | + self.dropout2 = nn.Dropout(0.5) |
| 17 | + self.fc1 = nn.Linear(9216, 128) |
| 18 | + self.fc2 = nn.Linear(128, 10) |
| 19 | + |
| 20 | + def forward(self, x): |
| 21 | + x = self.conv1(x) |
| 22 | + x = F.relu(x) |
| 23 | + x = self.conv2(x) |
| 24 | + x = F.relu(x) |
| 25 | + x = F.max_pool2d(x, 2) |
| 26 | + x = self.dropout1(x) |
| 27 | + x = torch.flatten(x, 1) |
| 28 | + x = self.fc1(x) |
| 29 | + x = F.relu(x) |
| 30 | + x = self.dropout2(x) |
| 31 | + x = self.fc2(x) |
| 32 | + output = F.log_softmax(x, dim=1) |
| 33 | + return output |
| 34 | + |
| 35 | + |
| 36 | +def train(args, model, device, train_loader, optimizer, epoch): |
| 37 | + model.train() |
| 38 | + for batch_idx, (data, target) in enumerate(train_loader): |
| 39 | + data, target = data.to(device), target.to(device) |
| 40 | + optimizer.zero_grad() |
| 41 | + output = model(data) |
| 42 | + loss = F.nll_loss(output, target) |
| 43 | + loss.backward() |
| 44 | + optimizer.step() |
| 45 | + if batch_idx % args.log_interval == 0: |
| 46 | + print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( |
| 47 | + epoch, batch_idx * len(data), len(train_loader.dataset), |
| 48 | + 100. * batch_idx / len(train_loader), loss.item())) |
| 49 | + if args.dry_run: |
| 50 | + break |
| 51 | + |
| 52 | + |
| 53 | +def test(model, device, test_loader): |
| 54 | + model.eval() |
| 55 | + test_loss = 0 |
| 56 | + correct = 0 |
| 57 | + with torch.no_grad(): |
| 58 | + for data, target in test_loader: |
| 59 | + data, target = data.to(device), target.to(device) |
| 60 | + output = model(data) |
| 61 | + test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss |
| 62 | + pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability |
| 63 | + correct += pred.eq(target.view_as(pred)).sum().item() |
| 64 | + |
| 65 | + test_loss /= len(test_loader.dataset) |
| 66 | + |
| 67 | + print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( |
| 68 | + test_loss, correct, len(test_loader.dataset), |
| 69 | + 100. * correct / len(test_loader.dataset))) |
| 70 | + |
| 71 | + |
| 72 | +def main(): |
| 73 | + # Training settings |
| 74 | + parser = argparse.ArgumentParser(description='PyTorch MNIST Example') |
| 75 | + parser.add_argument('--batch-size', type=int, default=64, metavar='N', |
| 76 | + help='input batch size for training (default: 64)') |
| 77 | + parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', |
| 78 | + help='input batch size for testing (default: 1000)') |
| 79 | + parser.add_argument('--epochs', type=int, default=14, metavar='N', |
| 80 | + help='number of epochs to train (default: 14)') |
| 81 | + parser.add_argument('--lr', type=float, default=1.0, metavar='LR', |
| 82 | + help='learning rate (default: 1.0)') |
| 83 | + parser.add_argument('--gamma', type=float, default=0.7, metavar='M', |
| 84 | + help='Learning rate step gamma (default: 0.7)') |
| 85 | + parser.add_argument('--no-cuda', action='store_true', default=False, |
| 86 | + help='disables CUDA training') |
| 87 | + parser.add_argument('--no-mps', action='store_true', default=False, |
| 88 | + help='disables macOS GPU training') |
| 89 | + parser.add_argument('--dry-run', action='store_true', default=False, |
| 90 | + help='quickly check a single pass') |
| 91 | + parser.add_argument('--seed', type=int, default=1, metavar='S', |
| 92 | + help='random seed (default: 1)') |
| 93 | + parser.add_argument('--log-interval', type=int, default=10, metavar='N', |
| 94 | + help='how many batches to wait before logging training status') |
| 95 | + parser.add_argument('--save-model', action='store_true', default=False, |
| 96 | + help='For Saving the current Model') |
| 97 | + args = parser.parse_args() |
| 98 | + use_cuda = not args.no_cuda and torch.cuda.is_available() |
| 99 | + use_mps = not args.no_mps and torch.backends.mps.is_available() |
| 100 | + |
| 101 | + torch.manual_seed(args.seed) |
| 102 | + |
| 103 | + if use_cuda: |
| 104 | + device = torch.device("cuda") |
| 105 | + elif use_mps: |
| 106 | + device = torch.device("mps") |
| 107 | + else: |
| 108 | + device = torch.device("cpu") |
| 109 | + |
| 110 | + train_kwargs = {'batch_size': args.batch_size} |
| 111 | + test_kwargs = {'batch_size': args.test_batch_size} |
| 112 | + if use_cuda: |
| 113 | + cuda_kwargs = {'num_workers': 1, |
| 114 | + 'pin_memory': True, |
| 115 | + 'shuffle': True} |
| 116 | + train_kwargs.update(cuda_kwargs) |
| 117 | + test_kwargs.update(cuda_kwargs) |
| 118 | + |
| 119 | + transform=transforms.Compose([ |
| 120 | + transforms.ToTensor(), |
| 121 | + transforms.Normalize((0.1307,), (0.3081,)) |
| 122 | + ]) |
| 123 | + dataset1 = datasets.MNIST('../data', train=True, download=True, |
| 124 | + transform=transform) |
| 125 | + dataset2 = datasets.MNIST('../data', train=False, |
| 126 | + transform=transform) |
| 127 | + train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs) |
| 128 | + test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs) |
| 129 | + |
| 130 | + model = Net().to(device) |
| 131 | + optimizer = optim.Adadelta(model.parameters(), lr=args.lr) |
| 132 | + |
| 133 | + scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) |
| 134 | + for epoch in range(1, args.epochs + 1): |
| 135 | + train(args, model, device, train_loader, optimizer, epoch) |
| 136 | + test(model, device, test_loader) |
| 137 | + scheduler.step() |
| 138 | + |
| 139 | + if args.save_model: |
| 140 | + torch.save(model.state_dict(), "mnist_cnn.pt") |
| 141 | + |
| 142 | + |
| 143 | +if __name__ == '__main__': |
| 144 | + main() |
0 commit comments