|
| 1 | +import os |
| 2 | +import numpy as np |
| 3 | +import numpy as np |
| 4 | +import pnetcdf |
| 5 | +from mpi4py import MPI |
| 6 | +from array import array |
| 7 | +import struct |
| 8 | + |
| 9 | +class MnistDataloader(object): |
| 10 | + def __init__(self, training_images_filepath,training_labels_filepath, |
| 11 | + test_images_filepath, test_labels_filepath): |
| 12 | + self.training_images_filepath = training_images_filepath |
| 13 | + self.training_labels_filepath = training_labels_filepath |
| 14 | + self.test_images_filepath = test_images_filepath |
| 15 | + self.test_labels_filepath = test_labels_filepath |
| 16 | + |
| 17 | + def read_images_labels(self, images_filepath, labels_filepath): |
| 18 | + labels = [] |
| 19 | + with open(labels_filepath, 'rb') as file: |
| 20 | + magic, size = struct.unpack(">II", file.read(8)) |
| 21 | + if magic != 2049: |
| 22 | + raise ValueError('Magic number mismatch, expected 2049, got {}'.format(magic)) |
| 23 | + labels = array("B", file.read()) |
| 24 | + |
| 25 | + with open(images_filepath, 'rb') as file: |
| 26 | + magic, size, rows, cols = struct.unpack(">IIII", file.read(16)) |
| 27 | + if magic != 2051: |
| 28 | + raise ValueError('Magic number mismatch, expected 2051, got {}'.format(magic)) |
| 29 | + image_data = array("B", file.read()) |
| 30 | + images = [] |
| 31 | + for i in range(size): |
| 32 | + images.append([0] * rows * cols) |
| 33 | + for i in range(size): |
| 34 | + img = np.array(image_data[i * rows * cols:(i + 1) * rows * cols]) |
| 35 | + img = img.reshape(28, 28) |
| 36 | + images[i][:] = img |
| 37 | + |
| 38 | + return images, labels |
| 39 | + |
| 40 | + def load_data(self): |
| 41 | + x_train, y_train = self.read_images_labels(self.training_images_filepath, self.training_labels_filepath) |
| 42 | + x_test, y_test = self.read_images_labels(self.test_images_filepath, self.test_labels_filepath) |
| 43 | + return (x_train, y_train),(x_test, y_test) |
| 44 | + |
| 45 | +# |
| 46 | +# Set file paths based on added MNIST Datasets |
| 47 | +# |
| 48 | +input_path = '.' |
| 49 | +training_images_filepath = os.path.join(input_path, 'train-images-idx3-ubyte/train-images-idx3-ubyte') |
| 50 | +training_labels_filepath = os.path.join(input_path, 'train-labels-idx1-ubyte/train-labels-idx1-ubyte') |
| 51 | +test_images_filepath = os.path.join(input_path, 't10k-images-idx3-ubyte/t10k-images-idx3-ubyte') |
| 52 | +test_labels_filepath = os.path.join(input_path, 't10k-labels-idx1-ubyte/t10k-labels-idx1-ubyte') |
| 53 | + |
| 54 | +# |
| 55 | +# Load MINST dataset |
| 56 | +# |
| 57 | +mnist_dataloader = MnistDataloader(training_images_filepath, training_labels_filepath, test_images_filepath, test_labels_filepath) |
| 58 | +(x_train, y_train), (x_test, y_test) = mnist_dataloader.load_data() |
| 59 | + |
| 60 | +# use partial dataset |
| 61 | +x_train_small = x_train[:60] |
| 62 | +y_train_small = y_train[:60] |
| 63 | +x_test_small = x_test[:12] |
| 64 | +y_test_small = y_test[:12] |
| 65 | + |
| 66 | +def to_nc(train_samples, test_samples, train_labels, test_labels, comm, out_file_path='mnist_images.nc'): |
| 67 | + if os.path.exists(out_file_path): |
| 68 | + os.remove(out_file_path) |
| 69 | + train_labels = list(train_labels) |
| 70 | + test_labels = list(test_labels) |
| 71 | + with pnetcdf.File(out_file_path, comm= comm, mode = "w", format = "64BIT_DATA") as fnc: |
| 72 | + |
| 73 | + dim_y = fnc.def_dim("Y", 28) |
| 74 | + dim_x = fnc.def_dim("X", 28) |
| 75 | + dim_num_train = fnc.def_dim("train_idx", len(train_samples)) |
| 76 | + dim_num_test = fnc.def_dim("test_idx", len(test_samples)) |
| 77 | + |
| 78 | + # define nc variable for all imgs |
| 79 | + v_train = fnc.def_var("train_images", pnetcdf.NC_UBYTE, (dim_num_train, dim_x, dim_y)) |
| 80 | + # put labels into attributes |
| 81 | + v_label_train = fnc.def_var("train_labels", pnetcdf.NC_UBYTE, (dim_num_train, )) |
| 82 | + |
| 83 | + # define nc variable for all imgs |
| 84 | + v_test = fnc.def_var("test_images", pnetcdf.NC_UBYTE, (dim_num_test, dim_x, dim_y)) |
| 85 | + # put labels into attributes |
| 86 | + v_label_test = fnc.def_var("test_labels", pnetcdf.NC_UBYTE, (dim_num_test, )) |
| 87 | + |
| 88 | + # put values into each nc variable |
| 89 | + fnc.enddef() |
| 90 | + v_label_train[:] = np.array(train_labels, dtype = np.uint8) |
| 91 | + for idx, img in enumerate(train_samples): |
| 92 | + v_train[idx, :, :] = img |
| 93 | + |
| 94 | + v_label_test[:] = np.array(test_labels, dtype = np.uint8) |
| 95 | + for idx, img in enumerate(test_samples): |
| 96 | + v_test[idx, :, :] = img |
| 97 | + |
| 98 | +comm = MPI.COMM_WORLD |
| 99 | +rank = comm.Get_rank() |
| 100 | +size = comm.Get_size() |
| 101 | + |
| 102 | +# create mini MNIST file |
| 103 | +to_nc(x_train_small, x_test_small, y_train_small, y_test_small, comm, "mnist_images_mini.nc") |
| 104 | + |
| 105 | +# create MNIST file |
| 106 | +# to_nc(x_train, x_test, y_train, y_test, comm, "mnist_images.nc") |
| 107 | + |
| 108 | + |
0 commit comments