Skip to content

Commit 5777041

Browse files
authored
Add DeepEdit transforms and interaction (#4164)
* Add DeepEdit transforms and interaction Signed-off-by: Andres Diaz-Pinto <[email protected]>
1 parent 641a079 commit 5777041

File tree

5 files changed

+1245
-106
lines changed

5 files changed

+1245
-106
lines changed

monai/apps/deepedit/interaction.py

Lines changed: 100 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,100 @@
1+
# Copyright (c) MONAI Consortium
2+
# Licensed under the Apache License, Version 2.0 (the "License");
3+
# you may not use this file except in compliance with the License.
4+
# You may obtain a copy of the License at
5+
# http://www.apache.org/licenses/LICENSE-2.0
6+
# Unless required by applicable law or agreed to in writing, software
7+
# distributed under the License is distributed on an "AS IS" BASIS,
8+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9+
# See the License for the specific language governing permissions and
10+
# limitations under the License.
11+
12+
from typing import Callable, Dict, Sequence, Union
13+
14+
import numpy as np
15+
import torch
16+
17+
from monai.data import decollate_batch, list_data_collate
18+
from monai.engines import SupervisedEvaluator, SupervisedTrainer
19+
from monai.engines.utils import IterationEvents
20+
from monai.transforms import Compose
21+
from monai.utils.enums import CommonKeys
22+
23+
24+
class Interaction:
25+
"""
26+
Ignite process_function used to introduce interactions (simulation of clicks) for DeepEdit Training/Evaluation.
27+
28+
More details about this can be found at:
29+
30+
Diaz-Pinto et al., MONAI Label: A framework for AI-assisted Interactive
31+
Labeling of 3D Medical Images. (2022) https://arxiv.org/abs/2203.12362
32+
33+
Args:
34+
deepgrow_probability: probability of simulating clicks in an iteration
35+
transforms: execute additional transformation during every iteration (before train).
36+
Typically, several Tensor based transforms composed by `Compose`.
37+
train: True for training mode or False for evaluation mode
38+
click_probability_key: key to click/interaction probability
39+
label_names: Dict of label names
40+
"""
41+
42+
def __init__(
43+
self,
44+
deepgrow_probability: float,
45+
transforms: Union[Sequence[Callable], Callable],
46+
train: bool,
47+
label_names: Dict[str, int],
48+
click_probability_key: str = "probability",
49+
) -> None:
50+
51+
self.deepgrow_probability = deepgrow_probability
52+
self.transforms = Compose(transforms) if not isinstance(transforms, Compose) else transforms
53+
self.train = train
54+
self.label_names = label_names
55+
self.click_probability_key = click_probability_key
56+
57+
def __call__(self, engine: Union[SupervisedTrainer, SupervisedEvaluator], batchdata: Dict[str, torch.Tensor]):
58+
59+
if batchdata is None:
60+
raise ValueError("Must provide batch data for current iteration.")
61+
62+
if np.random.choice([True, False], p=[self.deepgrow_probability, 1 - self.deepgrow_probability]):
63+
64+
# Run the inner loop only once
65+
inputs, _ = engine.prepare_batch(batchdata)
66+
inputs = inputs.to(engine.state.device)
67+
68+
engine.fire_event(IterationEvents.INNER_ITERATION_STARTED)
69+
70+
engine.network.eval()
71+
with torch.no_grad():
72+
if engine.amp:
73+
with torch.cuda.amp.autocast():
74+
predictions = engine.inferer(inputs, engine.network)
75+
else:
76+
predictions = engine.inferer(inputs, engine.network)
77+
batchdata.update({CommonKeys.PRED: predictions})
78+
79+
# decollate/collate batchdata to execute click transforms
80+
batchdata_list = decollate_batch(batchdata, detach=True)
81+
82+
for i in range(len(batchdata_list)):
83+
batchdata_list[i][self.click_probability_key] = 1.0
84+
batchdata_list[i] = self.transforms(batchdata_list[i])
85+
86+
batchdata = list_data_collate(batchdata_list)
87+
88+
engine.fire_event(IterationEvents.INNER_ITERATION_COMPLETED)
89+
90+
else:
91+
# zero out input guidance channels
92+
batchdata_list = decollate_batch(batchdata, detach=True)
93+
for i in range(1, len(batchdata_list[0][CommonKeys.IMAGE])):
94+
batchdata_list[0][CommonKeys.IMAGE][i] *= 0
95+
batchdata = list_data_collate(batchdata_list)
96+
97+
# first item in batch only
98+
engine.state.batch = batchdata
99+
100+
return engine._iteration(engine, batchdata)

0 commit comments

Comments
 (0)